
QlikView Developer
August 2008 Release

QlikView Version: 8.5 English

Copyright © 2008 QlikTech International AB, Sweden.

Under international copyright laws, neither the documentation nor the software may
be copied, photocopied, reproduced, translated or reduced to any electronic medium
or machine-readable form, in whole or in part, without the prior written permission of
QlikTech International AB, except in the manner described in the software agree-
ment.

Qlik®View and QlikTech are registered trademarks of QlikTech International AB.

Microsoft, MS-DOS, Windows, Windows NT, Windows 2000 Windows XP, Win-
dows Vista, SQL Server, FoxPro, Excel, Access, ActiveX, the Internet Explorer logo,
and MS Query are trademarks of Microsoft Corporation.

IBM, AS/400 and PowerPC are trademarks of International Business Machines Cor-
poration.

Borland, Paradox and dBASE are trademarks of Borland International.

ORACLE and SQL*Net are trademarks of Oracle Corporation.

Apple, TimeType, Macintosh, PowerMacintosh and MacOS are trademarks of Apple
Computer, Inc.

Release Date: August 2008

CONTENT
1 INTRODUCTION ..7
1.1 Who is QlikTech? ..7
1.2 What is QlikView? ..7
1.3 QlikView Developer ...8
1.4 Course Logistics ..10
1.5 Notes ..11

2 THE QLIK WHOLESALE TRADE (QWT) BUSINESS INTELLIGENCE PROJECT
PLAN 13

2.1 Project plan review ...13

3 A SHORT INTRODUCTION TO DATA STRUCTURES15
3.1 Relational databases ..15
3.2 Other data structures ..16

4 QLIKVIEW DATA STRUCTURES ..19
4.1 Comparing database structures to QlikView data structures19
4.2 Data structures in QlikView ..20

5 LOADING DATA INTO QLIKVIEW ...23
5.1 Script editing ...23
5.2 Edit Script Toolbar ..24
5.3 Edit Script Menu Commands ..25
5.4 Statements Area ... 26
5.5 Edit Script Tool Pane ..26
5.6 Syntax ..30
5.7 Renaming a Field ..33

6 DATA SOURCE FILES ...35
6.1 The QWT primary data source ..35
6.2 The QWT secondary data files ..36

7 CREATING THE SCRIPT ..37
7.1 Script generation ..37
7.2 Creating a connection to the database ..37
7.3 Reading tables into QlikView ...40

8 EXERCISES ...47
8.1 Script Debugging ..48

9 STRUCTURING THE SCRIPT ..51
9.1 Creating tabs in the script ...51
3

10 DATA STRUCTURE OF THE LOADED DATA57
10.1 The Table Viewer ...57
10.2 System fields ...59
10.3 The system tab ..59
10.4 The system table ..60
10.5 Document Properties: Tables page ...61

11 SCRIPTING CONSIDERATIONS ...63
11.1 Reading the Shipments table ...63
11.2 Synthetic key tables ...64
11.3 Circular references ..66
11.4 Causes of circular references ..67
11.5 Loosely Coupled Tables ..69

12 ADDING TEXT DATA ..71
12.1 Employees ..71
12.2 Offices ..72
12.3 Script generation using the Table Files Wizard72

13 LOADING AN XML FILE ...77
13.1 Loading a text file in XML Format ...77
13.2 Renaming fields using the Qualify statement79

14 KEY FIELDS ...83
14.1 Example predicament ...83
14.2 How does this affect you? ..83
14.3 Loading a field into a table multiple times ...84
14.4 Using a record counter on key fields ..84
14.5 Does the chart really show what I want it to?85

15 EXERCISES ..87
16 GENERATING DATA IN THE QLIKVIEW SCRIPT89

16.1 Resident Load ...89
16.2 Advanced – Using Orders to determine Sales Person.91
16.3 Creating data using Load Inline and Autogenerate92
16.4 Inline tables ..92
16.5 Autogenerate tables ..98

17 MAPPING TABLES ..99
17.1 Mapping Quarters to the Orders table ...99
17.2 MonthYear ...102
17.3 Cleaning up the table structure ...103

18 EXERCISES ...107
4

19 CREATING A CALENDAR ...109
19.1 Getting the Highest and Lowest date from the Orders table109
19.2 Creating variables in the script ...110
19.3 Creating the Master Calendar ...112

20 INCLUDE ...115
21 READING BUDGET INTO QLIKVIEW ..117

21.1 Reading Cross Tables ...117
21.2 Adding an Input Field ...119

22 ADVANCED SCRIPTING ..121
22.1 Condition on a field in a table ..121
22.2 Aggregating Data ...122
22.3 Joining tables ..122
22.4 Concatenation ..123
22.5 Preceding Load on Preceding Load ...127

23 EXERCISES ..129
24 QLIKVIEW DATA (QVD) FILES ..131

24.1 QVD file format ..131
24.2 Use of QVD files ...131
24.3 Creating QVD files ..132
24.4 Manual creation of a QVD file in the script132
24.5 Automatic Creation of a QVD file in the script134
24.6 QVD file script functions ..136

25 NEW IN QLIKVIEW 8.5 ..137
25.1 Set Analysis ...137
25.2 Dollar-Sign Expansion ..141
25.3 Set Analysis / Dollar-Sign Expansion Exercise142
25.4 Hierarchy Resolution ...147
25.5 Hierarchy Resolution Exercise ..151

26 QLIKVIEW SECURITY ..153
26.1 Access control ..153
26.2 Access levels ..153
26.3 Access control database ..153
26.4 Inherited access restrictions ..155
26.5 Hidden script ..156
26.6 Adding Section Access ...156
26.7 Access control for certain commands ..158
26.8 Further access control ..160
26.9 Unattended Command Line Reload Considerations161
5

26.10 Access restrictions on selected field values161
26.11 Field value limitation in Section Access ...162

27 REPORTING BUGS IN QLIKVIEW ...165
28 QLIKVIEW REFERENCE MATERIALS ...167

APPENDIX

DATA TYPES IN QLIKVIEW ..171
A.1 Data storage in QlikView ...171
A.2 Data containing information on data type ...171
A.3 Data without information on data type ..172
A.4 Dates and times ..173

THE FINAL SCRIPT..175
6

INTRODUCTION
1 INTRODUCTION
This chapter introduces QlikTech, and explains the differences between the QlikView
products. It outlines the basic capabilities of QlikView Developer and the underlying
contents of a QlikView file. It also lays out the format and structure of the rest of the
manual, and guides the student through the installation of QlikView Developer and
the course materials on their computer, setting up the interactivity and hands-on
access required for remainder of the class.

1.1 Who is QlikTech?
QlikTech was founded in Lund, Sweden in 1993. Today, research and development
continue in Lund, and Radnor, Pennsylvania is both U.S. and International Headquar-
ters. QlikTech has offices and partners around the world and is experiencing rapid
and sustained growth.

Information is the lifeblood of any organization. It is the foundation of knowledge,
and knowledge is the basis for appropriate action. This can be a distinct competitive
advantage. QlikTech delivers fast, powerful and affordable data analysis and report-
ing solutions, giving users clear insight and enhanced decision-making capabilities
across the enterprise.

How does this happen? Through innovative technologies and unmatched customer
service.

1.2 What is QlikView?
QlikView is a revolutionary platform that simplifies analysis for everyone. It is user-
friendly and provides superfast in-memory analysis capabilities by dynamically inte-
grating and presenting data from multiple data sources, or a single Excel or text file.

QlikView provides analysis and reporting that is
• Easy to use
• Broadly distributed
• Flexible
• Insightful

QlikView files can be deployed to users on corporate networks or through sophisti-
cated web-based portals and can be viewed in many different file types. Some of the
more common analysis clients for QlikView files include Java Objects, Internet
Explorer plug-in, AJAX (Asynchronus JavaScript and XML) Zero-Footprint and
Windows-based Analyzers. QlikView analysis files can also be e-mailed, just like a
Word or Excel document, and can be secured in many different ways. QlikView
Developer files are created using QlikView Developer and QlikView Professional
©1996 - 2008 QlikTech International 7

and are deployed and distributed using QlikView Server and QlikView Publisher.
Users access the files with QlikView Analyzer, which comes in various client types
listed above.

1.2.1 The QlikView Products
QlikView products include:
• Developer — for the Developer (this course)
• Professional — for the Power User
• Analyzer — for the End User
• Server — for Deployment
• Publisher — for Distribution

1.3 QlikView Developer
QlikView Developer is the toolkit for extracting, modeling and loading data.
QlikView Professional is the designer’s toolkit for creating compelling QlikView lay-
outs and design. This functionality is also available in QlikView Developer.

QlikView manages information like the human brain works. Just like the human
brain, QlikView makes associative connections with the information being pro-
cessed. You – not the database – decide which questions to ask. Just click on the item
you want to know more about. Conventional information search systems often
require a top-down approach, while QlikView allows you to get started with any
piece of data regardless of its location in the data structure.

The retrieval of data in conventional systems is often a complex task requiring exten-
sive knowledge of the structure of the databases and of the syntax of the query lan-
guage. The user is frequently limited to predefined search routines. QlikView
revolutionizes this by making it possible to select freely from data displayed on the
screen with a click of the mouse.

QlikView can be used in many ways. QlikView helps you acquire a unified and
coherent overview of the data in different databases and/or data sources - your own or
someone else's, central or local. QlikView can be used with virtually any database
and/or data source.

With QlikView you can
• create a flexible end user interface to an information warehouse
• get snapshots of data relations
• make presentations based on your data
• create dynamic graphical charts and tables
• perform statistical analysis
• link descriptions and multimedia to your data
8 ©1996 - 2008 QlikTech International

INTRODUCTION
• build your own expert systems
• create new tables, merging information from several sources
• build your own business intelligence system

Some examples of QlikView applications being used today are financial systems,
human resources administration, market analysis, customer support, project adminis-
tration, production control, stock inventories and purchasing. You can even mix the
different applications to gain entirely new information overviews.

A QlikView file is not a full relational SQL (Structured Query Language) database in
itself, although every one contains its own database that is updated every time the
source data are refreshed. The contents of a typical QlikView file are shown, below:

We will be working on how to create a QlikView file from the beginning, focusing
almost entirely on the script and using a few data display functionalities to ensure
that data is interpreted in a correct way.

The next section will guide you through the process of installing QlikView Developer
and the course materials on your computer.

Figure 1. The structure of a .QVW file and its relation to external data sources.
©1996 - 2008 QlikTech International 9

1.4 Course Logistics
Your instructor will have supplied the course materials and an evaluation copy of
QlikView. Perform the following tasks to prepare your computer for the class. Do not
worry if this has not been done before class time. It is a common starting point to kick
off the training.

1.4.1 Step-by-Step Instructions for Preparing Your
Computer for Class

The files for the installation of the evaluation copy of QlikView include:

QvSetupRedist_Eng.exe (or equivalent in your language, provided by your
instructor)

The course materials include:

QlikViewDeveloperCourse.zip

To Install QlikView:

Note that the QvSetupRedist_Eng.exe file is the same installation package as for
a licensed copy of the QlikView software, so if you have a license key, or antici-
pate getting one, the QvSetupRedist_Eng.exe file can be used and the license key
entered, either at installation or at any time during the evaluation period.

Please complete the following steps to install an evaluation copy of QlikView on
your computer:

1 Shut down any open applications on your computer.

2 Place the QvSetupRedist_Eng.exe file in a folder (a folder located on your
desktop is fine; you can delete it later).

3 Navigate to the QvSetupRedist_Eng.exe in the folder you just created and
double-click on it.

4 A dialog box will appear. Click Run. The installation files will temporarily
be extracted to your computer.

5 Follow the prompts to select the country in which the software will be used
from the drop-down list.

6 Review and, to continue, accept the license agreement.

7 Type your name and your company name in the appropriate dialog box and
check the box to allow “Anyone who uses this computer” to use QlikView.
10 ©1996 - 2008 QlikTech International

INTRODUCTION
Note if you do not enter a license key, you will be brought to the license key/eval-
uate QlikView screen each time you run QlikView during your evaluation period.
Be sure to check the Evaluate QlikView Developer radio button each time.

8 Accept the default location for QlikView: C:\Program Files\QlikView.
Note: if you are installing on Vista or a 64-bit machine, please refer to the
product documentation for more information.

9 Make sure the radio button for the Complete installation is selected. This will
ensure that all the sample files, manuals and the API Guide are installed with
the program

10 Complete the installation.

11 The first time you launch QlikView, you will be brought to a screen to enter
your license information. Click on the Evaluate QlikView Developer radio but-
ton if you do not have a license key. Your evaluation period includes fifteen
days of use. The days need not be contiguous. You must agree to the evalua-
tion conditions to move forward.

To Install the Course Materials:
Extract the course materials from the QlikViewDeveloperCourse.zip file into the
QlikView program folder that you created in when you installed the evaluation copy
of QlikView. If you followed the instructions above, the directory is C:\Program
Files\QlikView. When you have finished extracting the files, the path to your course
materials will be C:\Program Files\QlikView\TrainingVersion8\QlikViewDevelo-
perCourse.

Make a Windows shortcut to this folder and place it on your desktop.

Also, make a Windows shortcut to the documentation folder and place it on your
desktop (see below):
C:\Program Files\QlikView\Documentation

1.5 Notes
1.5.1 Program versions
This course was built using the English version of QlikView 8.5 running on Windows
XP. Thus, if other operating systems or languages are used, minor differences may
also be noted in the visual appearance of windows and dialog boxes.
©1996 - 2008 QlikTech International 11

1.5.2 Text formats of this material
Exercises and actions to be completed by you, the student, will be set-off by the
QlikView icon, as you see, below:

Do:
This is a sample of instructions you would see to complete an exercise containing a
sequence of steps –

1 Click on the Start button

2 Locate the QlikView icon

3 Click on the QlikView icon to launch the program

All commands, as well as all names of menus, dialogs and buttons are in the follow-
ing font style: File - Open
All names of list boxes, graphs and specific data in list boxes, etc. are in the follow-
ing font style: Country

All file names are in the following font style: QlikViewDeveloperCourse.qvw

Tips and Notes are outlined on a gray background, as you see below:

This sample sentence is used to illustrate important points in the text, tips and
notes to consider as you complete the course materials.
12 ©1996 - 2008 QlikTech International

THE QLIK WHOLESALE TRADE (QWT) BUSINESS INTELLIGENCE PROJECT
2 THE QLIK WHOLESALE TRADE
(QWT) BUSINESS INTELLIGENCE
PROJECT PLAN

The QWT Business Intelligence (BI) Project Plan has been included in this course
as an example of a project plan you may receive in your normal working environ-
ment. This is not meant to be a fully configured plan with time charts, responsibili-
ties, etc. It is designed to provide you with an overall objective to be completed
during the course. We will use the project plan as a guide for developing the load
script required for the QlikView document deliverable. We will refer to the project
plan document throughout the course, so you may want to keep the document open
on your computer for easy access.

You will find the project plan in your course materials with the name QWT Business
Intelligence Project Plan.pdf.

2.1 Project plan review
If you open the QWT Business Intelligence (BI) Project Plan document, you will
find that it includes the following sections:

Key Measures: here you will find some of the expressions that will be required in the
building of the QlikView document. Some of these calculations will be used in the
load script, while others will be used within sheet objects such as charts, pivot tables,
text boxes, etc.

Key Performance Indicators (KPIs): this section includes high level KPIs that can
be displayed through a dashboard perspective in the QlikView document.

Key Dimensions: this section includes a list of some of the key dimensions that will
be used throughout the application.

Trends: provides a list of the important time dimension fields that will be required to
analyze trends over time.

Key Selection Filters: includes a list of the fields required in the QlikView document
for the selection and filtering of data.

Security: contains the secured access requirements for the QlikView document.

Source Data Descriptions: provides source data locations and field level descrip-
tions for each of the data sources.
©1996 - 2008 QlikTech International 13

Each of these sections may also include one or more Business Rules to help the appli-
cation developer understand and deliver the appropriate features and functionality for
the users of this QlikView document.
14 ©1996 - 2008 QlikTech International

A SHORT INTRODUCTION TO DATA STRUCTURES
3 A SHORT INTRODUCTION TO DATA
STRUCTURES

In case you have not done much work with databases previously, we have provided a
short introduction to the basics of data structures and databases. This introduction
will assist you in creating QlikView documents based on your own data. If you are
already familiar with these terms, you may skip this chapter.

3.1 Relational databases
Data is typically stored in relational databases. Such databases include Microsoft
SQL Server, Microsoft Access, Oracle, DB2, Sybase, Informix, and Teradata.

A relational database is defined by several rules. One of these rules is that the data-
base is structured in a manner where information is related across multiple tables,
each consisting of rows and columns.

Another rule is that the database must support a query language. The most commonly
used database language is SQL, which is used to query, define and manipulate the
data. One of the most commonly used SQL statements is the query or SELECT state-
ment. The following sample statements return rows of data that pertain to the selected
and filtered values.

SELECT *
FROM Products
WHERE ProductID = 1004005

SELECT ProductName, CategoryID, QuantityPerUnit, UnitPrice
FROM Products

Figure 2. Relational database structure
©1996 - 2008 QlikTech International 15

WHERE ProductID = 1004005 OR
ProductID = 1005006

Figure 3. Query examples from a relational database

3.2 Other data structures
Additional data sources used in QlikView are character-delimited text files, Micro-
soft Excel spreadsheets, and XML files. Text files must have a special structure for
QlikView to be able to interpret them correctly without additional manipulation in the
load script. Ideally, the first line or row in the text file contains the header informa-
tion. The information in the header row should specifically identify the values in the
rows below it. The fields or values in the file typically are separated by characters,
usually commas, tabs or a semicolon. A structured text file is thus equivalent to a
table with columns and rows when read into QlikView.

Customer ID,Customer,Address,City,Zip,Country
1002,Adder Inc.,"9, rue de la Poste",Montreal,,Canada
1004,Alf Jequitaine,Rue de Gaulle 13,Paris,75664,France
1010,Atlantic Marketing,Bahnhof Strasse 3,Berlin,749 33,Germany
1017,Barley Foods,2 Atlanta Road,Washington D.C.,3582-
2134,U.S.A.
1023,Bearings Bank Ltd.,"88, Chamberlain Square",Man-
chester,,Great Britain

Figure 4. Comma-delimited text file example

QlikView interprets data in standard Excel files by means of the biff format (Binary
Interchange File Format). To read an Excel file into QlikView, there should be some
sort of table structure in the Excel file (straightforward columns and rows). QlikView
has several functions to interpret the Excel file in the Table File Wizard to get the cor-
rect data from the table file.

Figure 5. Excel data file

QlikView has an XML File Wizard that will analyze an XML file and can generate sev-
eral load statements, one for each table found.

CustID Customer Address City Zip Country
1002 Adder Inc. 9, rue de la Poste Montreal Canada
1004 Alf Jequitaine Rue de Gaulle 13 Paris 75664 France
1010 Atlantic Marketing Bahnhof Strasse 3 Berlin 749 33 Germany
1017 Barley Foods 2 Atlanta Road Washington D.C. 35822 U.S.A.
1023 Bearings Bank Ltd. 88, Chamberlain Square Manchester Great Britain
1027 Captain Cook's Surfing School Westkapelseweg 5 Arnhem Netherlands
1057 Elektrolumen Bergmansgatan 7 Malmoe Sweden
16 ©1996 - 2008 QlikTech International

A SHORT INTRODUCTION TO DATA STRUCTURES
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
- <TableBox>
- <_empty_>
<Customer_x0020_ID>1002</Customer_x0020_ID>
<Customer>Adder Inc.</Customer>
<Country>Canada</Country>
<Address>9, rue de la Poste</Address>
<City>Montreal</City>
</_empty_>
- <_empty_>
<Customer_x0020_ID>1004</Customer_x0020_ID>
<Customer>Alf Jequitaine</Customer>
<Country>France</Country>
<Address>Rue de Gaulle 13</Address>
<City>Paris</City>
</_empty_>
</TableBox>

Figure 6. XML data file
©1996 - 2008 QlikTech International 17

18 ©1996 - 2008 QlikTech International

QLIKVIEW DATA STRUCTURES
4 QLIKVIEW DATA STRUCTURES
The QlikView data structure can be a bit different from the data structure of a rela-
tional database. In this chapter we are going to talk about the QlikView data structure.

4.1 Comparing database structures to
QlikView data structures

The example above shows a data structure taken from the Access database that we
will be working with in the course. The figure shows eight tables that have defined
relationships – or are associated - through common (key) fields. We will discover
during the course that, unlike databases, QlikView does not allow explicit definitions
of table relationships. Alternatively, QlikView allows the developer to implicitly
define the relationships or joins between tables, even if the fields do not have the
same name or type.

QlikView does, however, automatically define table relationships – or associations –
through like-named fields. In this example, the key fields are all named exactly the
same in their respective tables. Of course, this is not always the case within a data-
base, so we will explain during the course how to create the proper associations
between tables in QlikView. We will also learn how to prevent unwanted associations
between tables in QlikView based on like-named fields. (For instance, you would not

Figure 7. Relational database table structure
©1996 - 2008 QlikTech International 19

want to link the Address field from a Supplier table to the Address field in the Cus-
tomer table.) We will also learn how to associate other data, that may not necessarily
be in database format (e.g. text files), to this data.

The illustration below is an example of a data structure schema one might see in
QlikView. The field EmployeeID links the tables Employee, SalesPersons, and
Employee_Mail to the Orders table. If you follow the lines, you will be able to see
which fields link the whole structure. If two of the records in different tables have the
same name in any of the linked fields, they will be associated. Association in
QlikView is essentially the same as the SQL outer join.

4.2 Data structures in QlikView
Each field from a data table, which is loaded into QlikView, becomes a field in the
QlikView relational data structure. Fields that appear in more than one table and have
identical names will be associated. Each field can be presented in the form of a list
box in the QlikView document. Certain fields are not displayed; their only function is
to link different tables. When you make a selection in a list box (click on or hover one
or more values), QlikView searches the whole internal data structure for logical con-
nections. As a result of this search the values associated with your selection are iden-

Figure 8. QlikView data structure
20 ©1996 - 2008 QlikTech International

QLIKVIEW DATA STRUCTURES
tified. The following figure illustrates how QlikView displays associated field values
when a specific OrderDate value is selected.

Figure 9. QlikView data associations
©1996 - 2008 QlikTech International 21

22 ©1996 - 2008 QlikTech International

LOADING DATA INTO QLIKVIEW
5 LOADING DATA INTO QLIKVIEW
To load data into QlikView, it is necessary to create instructions for data retrieval and
handling. These instructions make up the bulk of the load script.

The script may specify instructions for how QlikView should interpret different data
sets. QlikView can load and interpret the following types of data as input:
• The result of a database query, made by SQL via OLE DB/ODBC.
• Any type of character-delimited text files, e.g. comma separated files.
• Fixed field value position format files.
• Excel files in standard BIFF format.
• XML tables
• HTML tables
• QlikView Data (qvd) files.
• Previously created QlikView-files
• Dif files (common export format from AS/400).
• Custom data sources (e.g. Web Services) via a plug-in interface

5.1 Script editing
Let us now examine the Edit Script dialog, which can be used to generate, enter, and
edit QlikView load script statements.

Do:
1 Start by creating a new document by selecting the command New from the

File menu or by using the toolbar button.

2 Choose Edit Script from the menu or the toolbar button.

The following dialog screen will appear on the screen. As you can see, there are
numerous commands in the form of menu commands, toolbar buttons and dialog but-
tons. The edit window where your script will be located takes up the major part of the
dialog.
©1996 - 2008 QlikTech International 23

TIP: For a complete description of all current dialogs and settings available
through the Edit Script dialog, please refer to the document ReferenceMan-
ual.pdf. This reference document is typically installed during the standard
QlikView installation and placed in C:\Program Files\QlikView\Documentation

5.2 Edit Script Toolbar
The toolbar contains the following controls:

 Reload
Executes the script, closes the Edit Script dialog box and opens the Sheet
Properties: Fields page.

 Debug

Figure 10. Edit Script Dialog Screen
24 ©1996 - 2008 QlikTech International

LOADING DATA INTO QLIKVIEW
Starts the script execution in the Debugger. The debugger searches for errors
in the script. Every script statement can be monitored and the values of the
variables can be examined while the script is executed.

Save Entire Document
Saves the active .qvw document in a file. Data, script and layout are saved.

Print Tab
Lets you print the contents of the currently active tab.

Cut
Cuts out the selected script text and stores it in the Clipboard.

Copy
Copies out the selected script text.

Paste
Pastes the script text stored in the Clipboard back in.

Search
Searches the script for the specified text string in the current tab only.

Add New Tab
Adds a new script tab. The script is executed tab by tab, from left to right.

Table Viewer
Displays the graphical table viewer for current data.

Additional useful commands are also available in the five menu drop down lists at
the top of the dialog.

5.3 Edit Script Menu Commands
Within the FILE menu you will find the option for exporting the script as a script file
(file extension .qvs) or printing the script statements. If you need to work with a hid-
den script, it can be exposed from this menu.

The EDIT menu holds all the commands necessary for editing the contents of the text
edit pane. In addition to the commands for selecting, copying, cutting and pasting of
text, you will find the functions Insert File which is used for inserting a script file as
well as Find/Replace which lets you search for specific text strings. This menu can
also be used for commenting parts of the script.

As with other standard windows applications, many of these commands can be exe-
cuted by means of the keyboard shortcuts (e.g. CTRL+A will select all text).

The TAB menu contains the necessary commands to manage the tabs of the script.
©1996 - 2008 QlikTech International 25

The SETTINGS menu includes the Configure command, which opens the Font tab of
the User Preferences dialog where you can set font type and font color for the various
text types of the script.

The commands of the HELP menu open the QlikView Help files. (For more informa-
tion about the Edit Script dialog screen, you can refer to the Help right now.)

5.4 Statements Area
The Statements area shows a box for each statement on the active script tab. The box
outlines the most important features of the statement and provides an easier way to
navigate through the script.

5.5 Edit Script Tool Pane
The Tool Pane has four tab pages containing functions for script generation: Data,
Custom Data, Functions, and Settings.

5.5.1 Data Tab
Within the Data Tab, there are three grouping sections giving you the control and
functionality for bringing data into the QlikView document. Each of these three
groupings are defined in detail below.

Figure 11. The Statements section of the Edit Script dialog.

Figure 12. The Data tab
26 ©1996 - 2008 QlikTech International

LOADING DATA INTO QLIKVIEW
Database grouping
The commands in the Database group are used to create a connection to a database
and select fields from a data source. If you are using a commercial Database Manage-
ment System (DBMS), you may use ODBC or OLE DB as an interface between
QlikView and the database.

OLE DB (Object Linking and Embedding Database) Select this
alternative to access databases through OLE DB.

ODBC (Open Database Connectivity) Select this alternative if you
wish to access databases through an ODBC driver.

Connect… Use this button to open the Data Link Properties dialog box
to select an OLE DB or ODBC data source, and generate
the appropriate connect statement in the load script.

Select… Once you have established the data connection, click on
this button to open the Create Select Statement dialog box.
Then you will be able to specify fields and tables from the
chosen data source, and generate the appropriate SELECT
statement in the load script.

Data from Files grouping
The commands in the Data from Files group are used for generating the Load script
statements to read data from files.

Relative Paths Enable this option if the data location is relative to, or along
the same path as the current working directory. Otherwise,
it will default to absolute or the alternative path for state-
ments generated in the script.

Use FTP Mark this check box for the ability to select files from an
ftp file server when you request Table Files, QlikView Files,
or Include script statements.

Wizard This option allows you to use the Table File Wizard when
you click Open in the Open Local Files dialog.

Table Files… Launches the Open Local Files dialog box listing various
text file formats, including Microsoft Excel (.xls) and
QlikView Data (.qvd) files. Selecting one or several files
and pressing OK will generate one or several LOAD state-
ments based on the options selected in the wizard.

QlikView File… Click on this button to open the Open QlikView File dialog
box listing QlikView files (*.qvw). Selecting a file and
pressing OK will generate a binary statement. Only one
©1996 - 2008 QlikTech International 27

binary statement is allowed in a QlikView load script, and it
must be the first statement in the load script.

Web Files… Opens the Table Files Wizard: Source dialog box to enter a
URL as a source for your data table.

XML Files… Activates the Table Files Wizard: Source dialog box to
browse for an XML file.

Inline Data grouping
The commands in this grouping of options are used for generating the script state-
ments to create data inline in the script.

Inline Wizard… This button opens the Inline Data Wizard dialog box to assist
you with creating a Load Inline statement using a spread-
sheet type control.

User Access… Opens the Access Restriction Table Wizard dialog box to
assist you with creating a special Load Inline statement to be
used in a section access (application security).

5.5.2 Custom Data Tab
QlikView offers an interface that allows you to program custom interfaces to read in
various types of data sources. The typical case is data available via Web Services or
industry specific ‘home grown’ software applications. This plug-in is programmed
according to specifications as open-source and compiled as a dll. (Template code will
be provided on request from QlikTech.) The dll file is then placed in the same direc-
tory as the QV.EXE and will appear in the drop-down box for selection.

Connect… Opens a dialog box for connecting to the custom data
source. This dialog may look different with each custom
data set depending on the data source used.

Figure 13. The Custom Data tab
28 ©1996 - 2008 QlikTech International

LOADING DATA INTO QLIKVIEW
Select… Allows you to select fields from the custom data source.
This dialog may also look different with each data source
used.

5.5.3 Functions Tab
The commands on this tab are used for generating QlikView functions to be used
within script statements. Following is a description of use for each feature on this tab.

Function Name: Lists the categories into which functions are grouped, e.g.,
Date and Time, or String, etc. Select a category in the list to
see the corresponding functions in the Function Name drop
down list below.

Function Name: Contains a list of QlikView standard script functions. The
list can be narrowed down by first selecting a category in
the Function Category list above.

Paste: Click on this button once you have selected the function
you need. The function will then be entered in the script at
the current cursor position in the script dialog window.

5.5.4 Settings Tab
The Settings tab contains two groupings, Script Privileges and Settings, that are used
to grant certain rights and settings in the load script.

Figure 14. The Functions tab

Figure 15. The Settings tab
©1996 - 2008 QlikTech International 29

Script Privileges grouping
Enables the script to Open Databases in Read and Write mode and/or Execute External
Programs. Since these options can have serious consequences, QlikView has added a
safe guard. If your script contains either of these elements and you have not enabled
these settings, the respective statements will fail. The default setting in QlikView is to
not allow Write mode and not Execute external programs.

After enabling the use of either or both features, the user will be prompted to approve
the script the first time it is run on a computer. This check can be overridden by the /
 nosecurity command line switch or via a setting on the Security page of User Prefer-
ences.

Warning! Use either of these options with extreme caution. Altering the source
data or opening unsafe programs generally cannot be undone and the damage can
be irreversible.

Settings grouping
The Scramble Connect User Credentials option will scramble the database user and
password in the connect statements of your script. This is a recommended feature and
should only be disabled on the rare occasion when you need to see the database login
for script errors or similar situations.

5.6 Syntax
In this section, we will cover the most common statements (CONNECT, SELECT,
LOAD) in the script for identifying and loading data into QlikView. Each of these
statements can be generated using wizards. We will practice this in upcoming sec-
tions, but first, let us look at some examples of these statements, and how and where
they might be used in a QlikView load script.

We will also look at some of the options available for renaming a field, which is of
great importance when working with QlikView. For complete and current details
regarding script statement syntax, always refer to the QlikView Reference Manuals,
or to the Help file. All the script statements in this course are described in detail in
Book I of the Reference Manual for QlikView 8.

TIP: It is not a requirement that load script statements are created and stored
within the QlikView document, but there must be a reference to them if they are
stored in an external file. This is done by using the Include function available in
the script editor.
30 ©1996 - 2008 QlikTech International

LOADING DATA INTO QLIKVIEW
5.6.1 Connect Statement
The connect statement is used to establish a connection to a database through an
ODBC or OLE DB interface. Once this connection is established, it is used until a new
connect is defined. Multiple connect statements can be defined in a QlikView load
script, but only one database connection can be open at any time.

If the connect statement is generated by the provided wizard any user ID and pass-
word provided will be generated with the scrambled xuserid is / xpassword is syntax.
(Enable this functionality within the QlikView application by selecting the Scramble
Connect User Credentials on the General tab of the User Preferences dialog found
under the Settings… menu.) If you enter the connect statement manually, the non-
scrambled userid is / password is syntax must be used for providing user ID and pass-
word. Full scrambling is currently only possible for ODBC connect statements. Some
parts of the OLE DB connect string cannot be scrambled.

If ODBC is placed before connect, the ODBC interface will be used, otherwise OLE
DB will be used by default.

Four examples of connect statements:

ODBC connect to [SQLDATA;database=SQL1] (UserId is sa,
Password is admin);

ODBC CONNECT TO [MS Access
Database;DBQ=data\sampledata.mdb];

ODBC connect to
[COSQL01;DATABASE=SALESDATA;Trusted_Connection=Yes];

CONNECT TO[Provider=Microsoft.Jet.OLEDB.4.0;User
ID=Admin; Data Source=Datasources\QWT.mdb];

The data source specified by this last connect statement is used by all the subsequent
SELECT statements until a new connect statement is encountered.

5.6.2 Select Statement
The SQL SELECT statement is used to identify fields and tables to load from the cur-
rent database connection.

An example of two SELECT statements:

SQL SELECT * FROM FACILITIES;

SQL SELECT DISTINCT
I.AddressID,

Name,
Address,
©1996 - 2008 QlikTech International 31

PostalCode
FROM [Invoice] I, [Address] A

WHERE I.InvoiceType is not null and
I.InvoiceDate >= '2008-01-01' and
I.AddressID = A.AddressID;

Any valid SELECT statement can be used, but be aware that ODBC drivers can
impose limitations on acceptable syntax for a particular database connection.

ODBC Limitations:
The following is a partial listing of limitations imposed by ODBC drivers:
• QlikView functions cannot be used within the SELECT statements.
• SQL Syntax deviations may occur. Since the SELECT statement is interpreted by

the selected ODBC driver, the syntax will likely vary with each unique ODBC
connection. For example, the ODBC driver sometimes does not accept some
types of quotation marks. Following is another example using the as operator.

as is sometimes not allowed, i.e. aliasname must follow immediately after
fieldname.

as is sometimes compulsory if an aliasname is used.

distinct, as, where, group by, order by, or union are sometimes not supported.
• Field names and table names must be bracketed by quotes or square brackets if

they contain spaces or special characters.
• Quotation mark types may vary in the script by ODBC connection. When the

script is automatically generated by QlikView, the quotation mark that is used is
the one preferred by that ODBC driver as specified in the definition of the data
source in the connect statement.

Union Join Advantage
A benefit with using the SELECT statement is the ability to concatenate several state-
ments into one using a union operator (if supported by a particular ODBC connec-
tion):

selectstatement union selectstatement

5.6.3 Load Statement
The LOAD statement can bring in data through several different methods. Following
is a partial listing of the types of data that can be loaded into QlikView:
• Load from a database table
• Load directly from a text, Excel, qvd, xml, etc. file
32 ©1996 - 2008 QlikTech International

LOADING DATA INTO QLIKVIEW
• Load from a subsequent select or load statement. The subsequent select or load
must immediately follow this load statement.

• Load from a previously loaded (resident) table
• Load directly from data in the load script through an Inline load
• Load from generated data

An advantage of the LOAD statement over the connect statement is the ability to use
all the QlikView script functions.

As with other statements, field names and table names must be bracketed by single
quotes or square brackets if they contain spaces or special characters.

Five example LOAD statements:

Load * from 'c:\userfiles\data2.txt' (ansi, txt,
delimiter is '\t', embedded labels);

Load A, B, if(C>0,'+','-') as X, weekday(D) as Y;
Select A,B,C,D from Table1;

Load A, B, A*B+D as E
Resident tab1;

Load * Inline
[CatID, Category
0,Regular
1,Occasional
2,Permanent];

Load RecNo() as A, rand() as B
Autogenerate(10000);

5.7 Renaming a Field
It is possible to rename one or more fields in the load script. It is also possible to
name fields that have no name in the source data. There are multiple ways of doing
this in a script.

5.7.1 AS Statement
Rename using as in a LOAD statement, which means that you rename a specific field
in that specific statement. If you are using the Table Files Wizard to create a LOAD
statement, you can click on any field name in the Label area, and enter a new name.
The generated LOAD statement will include the as syntax automatically.

Example as:

Load Capital as [Capital city],
Cntry as Country,
©1996 - 2008 QlikTech International 33

Pop as Population
From Country.csv (ansi, txt, delimiter is ','
,embedded labels);

5.7.2 Alias Statement
Rename using the alias statement, which means that you rename all the occurrences
of those fields with the names specified in the script. Following is the syntax guide-
line:

Alias <fieldname> as <new fieldname>, <fieldname> as <new fieldname>,…

Example use of the alias statement:

Alias ProdId as ProductID, Mon as Month, Cname as
Customer;

5.7.3 Rename Field Statement
Rename one or more existing fields using Rename Field statement. This statement can
optionally use a mapping table, which stores the oldname to newname conversion
data. We will discuss mapping tables later in this course.

The syntax for a rename field statement is:

rename field[s] (using mapname | oldname to newname {, oldname to newname})

mapname is the name of a previously loaded mapping table containing one or more
pairs of old and new field names

oldname is the old field name and

newname is the new field name.

Note: Both rename field and rename fileds are allowed forms with no difference
in effect.

Example use of the rename field statement:

Rename field XAZ0007 to Sales;

FieldMap:
Mapping select oldnames, newnames from datadict;
Rename fields using FieldMap;
34 ©1996 - 2008 QlikTech International

DATA SOURCE FILES
6 DATA SOURCE FILES
In the first part of the course, we will load data from three different sources, accord-
ing to our project plan document. The primary data will come from an Access data-
base, named QWT. To this data, we will add tables from Excel spreadsheets and from
an XML file.

The data sources are logically connected by common fields (a.k.a. key fields). In the
case of the tables that contain information on the employees and the company's
orders, we have the common fields EmployeeID and EmpID. However, one of the
fields must be renamed for QlikView to associate these fields in our application. We
also have SupplierID, which is a common field in the QWT database and the table
containing data on the suppliers (XML). You may also notice that there are fields
with identical names in the tables that we do not want to associate, such as Address in
the Customers and Suppliers tables. These fields will have to be renamed as well, to
prevent an inadvertent QlikView association.

6.1 The QWT primary data source
According to our project plan, and as can be gathered from Figure 16 Data source
files, the QWT.mdb database contains the Customers, Divisions, Shippers, Ship-
ments, Products, Categories, Orders, and Order Details tables. We will load each of
these tables, but first we need to create a connection to the database. We can connect
to a database through either an ODBC or an OLE DB connection. What type of con-

Figure 16. Data source files
©1996 - 2008 QlikTech International 35

nection to use is often dependent on the type of database used. In general, an OLE
DB connection should be used if available. In this training material, we will use an
OLE DB connection towards the access database.

6.2 The QWT secondary data files
In addition to the primary database, our project plan also calls for data extraction
from the following data sources:

6.2.1 Excel files
• Budget.xls
• EmpOff.xls

6.2.2 XML files
• Suppliers.xml
36 ©1996 - 2008 QlikTech International

CREATING THE SCRIPT
7 CREATING THE SCRIPT
In this chapter, we will start loading data into QlikView. We do this by creating a
script that defines which data to load. The script that we will write in this part of the
course loads data from an Access database. Fields from several tables will be loaded
using SELECT statements. The syntax used is standard SQL. We will connect to the
database using an OLE DB connection.

7.1 Script generation
The advantage of using the QlikView script editor is that many of the script state-
ments are generated automatically by selecting the fields you want to load in the file
wizards. It is often necessary to make some changes manually, e.g. to assign new
field names. The script editor may also point out obvious errors through color-cod-
ing, e.g. unmatched parenthesis on a function.

7.2 Creating a connection to the database

Do:
1 Start QlikView if it is not already active.

2 Select New from the File menu or the appropriate button on the toolbar to
create a new QlikView document.

3 Select Document Properties from the Settings menu, and open the General
tab in the dialog. Make sure that Generate Logfile is checked. This will gener-
ate a script execution log file every time the load script is run.

Or, as an alternative, you can also check the Always Use Logfiles for New
Documents option found in the User Preferences dialog on the Design tab.
Then this option will be selected for you automatically in the future.

4 Close the Document Properties and Go to the User Preferences in the Settings
menu. On the Save tab, make sure to check the Save Before Reload. This will
make QlikView save all your documents every time before you reload the
document so that you will not lose any changes you have made in the script.

5 Select Save from the File menu or the associated save button on the toolbar
to save a document. Navigate to the course directory and save your file with
the following name under Files: QWTAnalysis.qvw
©1996 - 2008 QlikTech International 37

TIP: It is usually a good idea to save a new document prior to editing the script, so
the correct relative paths can be generated. This is required for portability of the
QlikView document.

6 Select Edit Script from the File menu or the toolbar.

You have now created a new script file and, as you can see, it already con-
tains some lines of script. These are the format variables, which are gener-
ated automatically by QlikView. The variables are based on the regional
settings in your operating system regarding date, currency, time, etc.

7 Select OLE DB in the Database group on the Data tab and click Connect to
open the Connect to Data Source dialog.
This opens up a dialog where you can choose from several OLE DB provid-
ers that are installed on your computer. Since we are working with an Access
database, we need to select the driver that works with this database provider.

Figure 17. The Data Link Properties dialog.
38 ©1996 - 2008 QlikTech International

CREATING THE SCRIPT
8 Select the Microsoft Jet 4.0 OLE DB Provider to connect to the Access data-
base.

9 Click Next to get to the dialog page where we can select the database to
which we will connect.

10 Click on the Browse icon and browse to the QWT database path.

The QWT database does not have a user name and password so we can leave
the default as it is.

11 Click on Test Connection to check that QlikView connects to the database
and then OK to close the Data Link Properties dialog.

The Microsoft Jet 4.0 OLE DB Provider generates the following code for the connec-
tion to the database:

CONNECT TO
[Provider=Microsoft.Jet.OLEDB.4.0;UserID=Admin; Data
Source=C:\QlikView\Training\QlikViewDeveloper\Data

Figure 18. Select the database
©1996 - 2008 QlikTech International 39

sources\QWT.mdb;Mode=Share Deny
None;ExtendedProperties=""; Jet OLEDB:System
database="";Jet OLEDB:Registry Path="";Jet
OLEDB:Database Password="";Jet OLEDB:Engine
Type=5;Jet OLEDB :Database Locking Mode=1;Jet
OLEDB:Global Partial Bulk Ops= 2;Jet OLEDB:Global Bulk
Transactions=1;Jet OLEDB:New Data base Password="";Jet
OLEDB:Create System Database=False;Jet OLEDB:Encrypt
Database=False;Jet OLEDB:Don't Copy Locale on
Compact=False;Jet OLEDB:Compact Without Replica
Repair=False;Jet OLEDB:SFP=False];

Because of the properties of the database, any part of the string after the Data Source
statement can be altered or eliminated. Below you can see what is necessary for the
connection to the QWT database for QlikView:

CONNECT TO [Provider=Microsoft.Jet.OLEDB.4.0;User
ID=Admin;Data Source=Datasources\QWT.mdb];

The statements needed in our OLE DB connection are the Provider, the User ID
and the Datasources. This may be different between databases and between differ-
ent OLE DB drivers.

As you can see, we can alter the path of the database to a relative path instead of an
absolute path. We do this by removing the part of the path to the folder where we
have saved the QlikView document. The part of the path removed from the example
above is:

C:\QlikView\Training\QlikViewDeveloper\

In this case, our database was stored in a folder below where our QlikView document
resides.

7.3 Reading tables into QlikView
After creating the OLE DB connection, it is time to read data from the tables of the
database into QlikView. Before we do this though, we will create some comments in
the script to help us understand the script if we do not work with it for a while or
someone else must edit it. A comment creates a script part that is not read when load-
ing data into QlikView. In the Script Editor the lines that have been commented out
will turn green in color.

Note: The path shown in the connection string may vary from the one shown
above. This is dependent on where you have stored your QWT database.
40 ©1996 - 2008 QlikTech International

CREATING THE SCRIPT
The following figure shows an example of comments added following the connection
string to describe the database that is being used.

Warning! Do not use the // comment for an Include function, since that will only
comment the initial line in the Include file.

QlikView allows three different comment types:
• REM preceding a statement will comment that statement up to its ending ;
• // will comment all text following it on a single line.
• /* … */ will comment all text between the delimiters.

In the following exercise, you are free to add any type of comment you would like.
The suggestion above used the text from the project plan document from the Custom-
ers table data description. (Some formatting was required to line up the columns in
the record layout table).

Do:
1 We will start by adding the Customers table to the script.

Figure 19. Adding comments to the load script
©1996 - 2008 QlikTech International 41

2 Click the SELECT button in the Edit Script dialog, and select the table Cus-
tomers from Database Tables.

The Create Select Statement dialog has several options. In the top section you
can find information on the active database.

The middle section holds information regarding the Tables, Views, Syn-
onyms, System Tables and Aliases of the database. In a large database, it
might be a good idea to uncheck everything but what you actually want to
read into QlikView. Usually, you want to work with Tables and sometimes
Views, but the rest may be unnecessary.

You can see all available tables in the Database Tables window. When a table
is selected, you can find the fields of the table in the Fields window. You
have the option to view the fields in Text Order or Original Order, i.e. the
order they are placed in the table.

There are several ways to view the table currently being read into QlikView
in the bottom of your screen. On the Script tab you can see the syntax as it
will appear in the script. You can select how the fields will be placed in the
script, whether in one Column, on one Row or Structured with line breaks.
You also have the possibility to read the table with a Preceding Load. The

Figure 20. The Create Select Statement dialog
42 ©1996 - 2008 QlikTech International

CREATING THE SCRIPT
preceding load gives you the advantage of working with the QlikView syn-
tax instead of the SQL syntax.

3 Make sure to check Preceding Load so that we can use the QlikView syntax
in the script.

4 Click OK to close the Create Select Statement dialog. The following script
has been created:

LOAD Address,
City,
CompanyName,
ContactName,
Country,
CustomerID,
DivisionID,
Fax,
Phone,
PostalCode,
StateProvince;

SQL SELECT *
FROM Customers;

5 Make a comment before the table so that this table will be easy to find.

example: // ************** Customers table **************

6 Give the table a label by typing the name Customers on the row above the
LOAD statement and end it with a colon (:).

The first few lines of your script should now look like this:

//************** Customers table **************
Customers:

LOAD Address,

7 Click the Save icon in the Edit Script dialog. This will save your entire
QlikView document, including the load script.
©1996 - 2008 QlikTech International 43

8 Click the Reload icon in the Edit Script dialog to reload the script. The
following dialog will appear after script execution.

In this dialog, all fields from all tables loaded into the QlikView application
are shown. This gives you the ability to select ALL the fields or select only
the fields that will be used in your document.

9 Click OK and open the Script Editor again. We will continue to read tables
into QlikView starting with the Shippers table.

10 Make sure your cursor is positioned after the Customers Table LOAD state-
ment. You will want at least one or two line spaces separating it from the
next table load.

11 Click Select to open to the Create Script Statement dialog.

12 Select the Shippers table and click OK to close the dialog. Enter a comment
for the Shippers table and give it the Label Shippers.

Figure 21. The Sheet Properties [Main] dialog.
44 ©1996 - 2008 QlikTech International

CREATING THE SCRIPT
As can be seen, the Shippers table has a field name in common with the Cus-
tomers table. The field CompanyName exists in both tables. This field
should not be a key field between these two tables. We have to rename this
field in one of the tables to avoid a connection between these two tables. Put
the cursor directly after CompanyName in the Shippers table and rename this
field to Shippers using AS. The script should look like the following.

// *************** Shippers table ***************
Shippers:
LOAD CompanyName AS Shippers,

ShipperID;
SQL SELECT *
FROM Shippers;

13 Save the document and Reload the script.
©1996 - 2008 QlikTech International 45

46 ©1996 - 2008 QlikTech International

EXERCISES
8 EXERCISES
In this exercise we will bring in additional tables needed from the QWT.mdb data-
base. Disregard the connection or associations between the tables for now, these will
be added later on in the course.

Do:
1 Load the fields from the Products table into the script. Make sure to load all

fields except the UnitPrice since this field will be loaded from another table
later on. Make a comment about the table and label it Products.

2 Load the fields from the Categories table into the script. Make a comment
about the table and label it Categories.

3 Load the fields from the Divisions table into the script. Make a comment
about the table and label it Division.

In addition to the Customers and Shippers tables illustrated on previous
pages, your script should resemble the following when complete:

//*************** Products table ***************

LOAD CategoryID,
ProductID,
ProductName,
QuantityPerUnit,
SupplierID,
UnitCost,

// UnitPrice,
UnitsInStock,
UnitsOnOrder;

SQL SELECT *
FROM Products;

//*************** Categories table ***************
LOAD CategoryID,

CategoryName,
Description;

SQL SELECT *
FROM Categories;

//*************** Divisions table ***************
LOAD DivisionID,

DivisionName;
©1996 - 2008 QlikTech International 47

SQL SELECT *
FROM Divisions;

8.1 Script Debugging
When making script changes, it can sometimes be difficult to find errors. QlikView
therefore contains a script execution debugger to help you identify mistakes in your
script.

Running the script in the debugger makes it much easier to find errors. It can also
save a great deal of time. In the debugger, you can study each statement and check
the values of the variables while the script is being executed.

The script is shown in the window in the upper half of the dialog. A yellow cursor
shows how far execution has proceeded. Breakpoints can be inserted by clicking on a
line number, and removed by clicking again. All breakpoints can be removed by
clicking the Clear button. When a new breakpoint is encountered, execution is halted
until the command is given to resume.

The current script statement is shown in the window in the middle of the dialog.

Status codes and error messages are shown in the lower left window. This is essen-
tially the same information as that shown in the Script Execution Progress window
when the script is run without the debugger.

The bottom right-hand window shows all the variables and their values. Values that
have been changed are shown in red.

The script can be run in three different modes:

To run the whole script, use one of the following methods:

Select Limited Load and enter a number in the window below. The number is the max-
imum number of records accepted for each LOAD and SELECT statement. This is a
very practical way to limit the execution time when a script is being run on live data.

Click End Here toend the current reload. Data that has already been loaded will be
retained in QlikView.

Run This is the normal mode for script execution. The script is run to the end or
until a breakpoint is encountered.

Animate The script is run as described above, but with a short pause after each
statement. This allows you to follow the execution more carefully.

Step The script is executed one statement at a time.
48 ©1996 - 2008 QlikTech International

EXERCISES
Click Cancel to stop execution and to discard the loaded data.

We will now try running the debugger on our script.

Do:
1 Open the Edit Script dialog from the menu or toolbar.

2 Click the Debug toolbar icon to open the Debugger dialog.

3 Insert breakpoints before SQL SELECT in tables Customers, Shippers and
before LOAD in the Products table, by clicking on the line number in the
script window.

4 The breakpoints will be seen as red points.

5 See what happens when you click on the Animate button.

Figure 22. The Debugger dialog.
©1996 - 2008 QlikTech International 49

Running the script in the various modes available in the debugger is like
clicking Run in the script.

6 When the script has been loaded, you must click Close to get to the Select
Fields dialog.

7 Open the debugger again and Run the script with a Limited Load of 10
records.

Not only can this be a useful tool for identifying errors and validating changes, but as
a way to create template applications with a small number of records in them.

8.1.1 The Script Execution Log File
At the beginning of the course, we set the Generate Logfile selection in Document
Properties. Now we will take a look at the file that is generated during script execu-
tion.

The log file will have the same name as your QlikView document, but with a
“.qvw“appended to it, and a file extension of .log (e.g. QVE_Course.qvw.log). The
file will be located in the same directory as the QlikView document that is being
reloaded.

The log file will generally contain all executed script statements, without the line or
bracketed comments (REM statements are shown). It also includes the following
information.
• Start execution timestamp
• Finished execution timestamp
• The number of fields and name of each field identified in a LOAD or SELECT,

along with the number of records included in that LOAD or SELECT.
• The line number from the script
• The QlikView version running the script
• Any script execution errors that may have occurred
• Any synthetic keys that are created will be listed at the end of the log file.

Do:
1 See if you can locate the log file from your application, and open it using

Notepad, or a similar tool.
50 ©1996 - 2008 QlikTech International

STRUCTURING THE SCRIPT
9 STRUCTURING THE SCRIPT
So far, we have loaded several tables. Often when building a QlikView application,
many tables are used and sometimes you want to manipulate existing tables. To make
the script easier to work with, we can divide the script into different tabs. In this
chapter, we will work with tabs to get a clear and easy to follow structure of the
script.

9.1 Creating tabs in the script
To structure the QlikView script and easily find the different tables, we are going to
create different tabs in the script. The tables read so far would be considered dimen-
sion tables. These tables hold information that is pertinent to look at by time or other
values as well as make selections in. We are going to create a tab in the script called
Dimensions and put our dimension tables in this tab.

Do:
1 Open the script using the Edit Script icon.

2 Click on the Add new tab tool button or go to the Tab Menu and click
Add Tab.

3 Name the Tab Dimensions.

4 Go to the Main tab and select all the tables we have loaded so far. Leave the
Set statements and the Connect statement for now.

5 Cut the tables and go to the Dimensions tab.

6 Paste the tables in the Dimensions tab.

7 Click Save to save the document.

Figure 23. The Tab Rename Dialog
©1996 - 2008 QlikTech International 51

The script should now contain two tabs, the Main tab with data relevant for
the whole application and the Dimensions tab with the dimension tables that
will be used in the application.

We will continue by reading the fact tables into QlikView. The fact table or tables
often contain data you want to analyze. The fact table or tables are usually the con-
necting tables to the dimension tables.

In this training, there are two fact tables, Orders and Order Details. We are going to
load them on a separate tab in the script.

Do:
1 Create a new Tab and name it Orders.

2 Click SELECT again and load the table Orders.

3 Manually edit the script to use the field OrderDate as shown below, to gener-
ate new fields for the year, month and day.

//*************** Orders table ***************

Orders:
LOAD CustomerID,

EmployeeID,
Freight,
OrderDate,
Year(OrderDate) AS Year,
Month(OrderDate) AS Month,
Day(OrderDate) AS Day,
OrderID,
ShipperID;

SQL SELECT *
FROM Orders;

By using a preceding load statement, we can use QlikView date functions,
including the formatting of month. (The difference is that the month is repre-

Figure 24. Multiple tabs in the Edit Script dialog
52 ©1996 - 2008 QlikTech International

STRUCTURING THE SCRIPT
sented as a number when using the SELECT statement, and as a combination
of text and number when using the LOAD statement.)

Note: Text strings used to represent the months is dependent on the regional set-
tings in your operating system (as seen in the initial script statements). If your set-
tings are in English, the months will be shown in English.

According to the project plan, under the Trends section, we will need to offer
time analysis over Month, MonthYear, Quarter, and Year. The script above
will provide the Year, the Month, and the Day of the month. We will expand
on this later to add MonthYear and Quarter.

4 We will select and load the table OrderDetails under the Orders table. Here
we will create a new field LineSalesAmount, which is the first Key Measure,
identified in the project plan in the Key Measures section. LineSalesAmount
is the result of a calculation based on UnitPrice*Quantity*(1-Discount). The
load script is as follows:

//*************** Order Details table ***************
OrderDetails:
LOAD Discount,

LineNo,
OrderID,
ProductID,
Quantity,
UnitPrice,
UnitPrice * Quantity * (1 - Discount) AS
LineSalesAmount;

SQL SELECT * FROM “Order Details”;

5 Save the document and Reload the script.

The script should be as follows. Note that the different script tabs are marked
///$tab. This is the QlikView way of marking the different tabs when you
export the script to a script file.

///$tab Main
SET ThousandSep=',';
SET DecimalSep='.';
SET MoneyThousandSep=',';
SET MoneyDecimalSep='.';
SET MoneyFormat='$#,##0.00;($#,##0.00)';
SET TimeFormat='h:mm:ss TT';
SET DateFormat='M/D/YYYY';
SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';
©1996 - 2008 QlikTech International 53

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;
Aug;Sep;Oct;Nov;Dec';

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

CONNECT TO [Provider=Microsoft.Jet.OLEDB.4.0;User
ID=Admin;Data Source=Datasources\QWT.mdb];

///$tab Dimensions
//*************** Customers table **************
Customers:
LOAD Address,

City,
CompanyName,
ContactName,
Country,
CustomerID,
DivisionID,
Fax,
Phone,
PostalCode,
StateProvince;

SQL SELECT *
FROM Customers;

//*************** Shippers table **************
Shippers:
LOAD CompanyName as Shippers,

ShipperID;
SQL SELECT *
FROM Shippers;

//*************** Products table **************
Products:
LOAD CategoryID,

ProductID,
ProductName,
QuantityPerUnit,
SupplierID,
UnitCost,
//UnitPrice,
UnitsInStock,
UnitsOnOrder;

SQL SELECT *
FROM Products;

//*************** Categories table **************
Categories:
LOAD CategoryID,
54 ©1996 - 2008 QlikTech International

STRUCTURING THE SCRIPT
CategoryName,
Description;

SQL SELECT *
FROM Categories;

//*************** Divisions table **************
Divisions:
LOAD DivisionID,

DivisionName;
SQL SELECT *
FROM Divisions;

///$tab Orders
//*************** Orders table **************
Orders:
LOAD CustomerID,

EmployeeID,
Freight,
OrderDate,
year(OrderDate) AS Year,
month(OrderDate) AS Month,
day(OrderDate) AS Day,
OrderID,
ShipperID;

SQL SELECT *
FROM Orders;

//************** Order Details table **************
OrderDetails:
LOAD Discount,

LineNo,
OrderID,
ProductID,
Quantity,
UnitPrice,
UnitPrice * Quantity * (1 – Discount) AS
LineSalesAmount;

SQL SELECT *
FROM `Order Details`;
©1996 - 2008 QlikTech International 55

56 ©1996 - 2008 QlikTech International

DATA STRUCTURE OF THE LOADED DATA
10 DATA STRUCTURE OF THE
LOADED DATA

In this chapter, we will learn about the Table Viewer. We will see how we can use it to
analyze and understand the internal structure of our QlikView document. We will
also be introduced to several ways to monitor and analyze the structure of the
QlikView data. These tools and techniques will be useful while we create the load
script and the document structure; and, it will be critical when trying to verify the
integrity of a document or to debug error behavior.

10.1 The Table Viewer
The Table Viewer provides an easy way to display the logical structure of the available
tables and the connections between them in a QlikView document. To open the Table

Viewer select File … Table Viewer (or CTRL+T) (or the tool button on the design
tool bar. This opens a window displaying all the loaded tables and their connecting
key fields. You may rearrange its components by clicking and dragging or by clicking
Auto-Layout. Be sure to click on OK and not the “X” in the upper right window corner
when done to save your layout.

Figure 25. The Table Viewer, example (shows more tables than have been loaded so
far.)
©1996 - 2008 QlikTech International 57

The Table Viewer gives you a graphical view of the tables and the connections
between the tables. You can rearrange the tables so that the structure becomes easy to
follow. You can also switch between the Internal Table View of QlikView i.e. how the
tables are connected in QlikView and a Source Table View that shows you the original
connections between the tables as they are read into QlikView.

Do:
1 Open the Table Viewer from the File menu or use the shortcut CTRL+T.

2 Manually rearrange the tables, or click the tool button, so
that you can see the connections between them.

3 Place the cursor over the Orders table header.

When you place the cursor over a table, a statistics bubble will appear for
this table. As you can see in the figure below, you get information on the
number of Rows, Fields and Keys in the table. This informational bubble will
remain for approximately 30 seconds or until you move your mouse over
another area.

Figure 26. Switching between table views

Figure 27. Table information
58 ©1996 - 2008 QlikTech International

DATA STRUCTURE OF THE LOADED DATA
4 Place the cursor over ShipperID in the Shippers table. When placing the cur-
sor over a field in a table, you get information on this field. The Information
density tells the percentage of rows in the field that actually hold informa-
tion. The Subset ratio is only available for key fields and shows the percent-
age of values of the total in the key field that comes from all tables. In this
case it shows that several Shippers did not appear in the Orders table.

10.2 System fields
During the loading process, the following special fields are generated which contain
information on the internal data structure within QlikView, i.e. they contain metadata
on the Associative Query Logic (AQL) database. These are called system fields, and
we shall now see how they can be used when working with QlikView.
• $Field Shows the names of all the fields loaded
• $Table Shows the names of all the tables loaded
• $Rows Shows the number of rows in the tables
• $Fields Shows the number of fields in the various tables
• $FieldsNo Shows the positions of the fields in the tables (column number)
• $Info Shows the names of the information tables loaded

10.3 The system tab
When you are developing a document, a system sheet is very useful as it shows how
the logical tables in the document are related to each other. It is good practice to cre-
ate the system sheet as the first step after loading the data.

Do:

1 Create a new sheet, either by clicking on the Add Sheet button in the
design toolbar or by selecting Add Sheet in the Layout menu.

Figure 28. Table information
©1996 - 2008 QlikTech International 59

2 Right-click on the new sheet, and select Properties. Enter the Title of the
sheet as System on the General tab.

3 On the Fields tab, check the box Show System Fields and then select all the
fields with a dollar sign, $, in front of them.

4 Click the Add button, and then OK.

5 Arrange the fields on the sheet and then right click on the $Field list box,
then select Properties, General, Show Frequency to be able to see how many
times the various fields occur in the internal data structure.

6 Under the Sort tab you can sort them in decreasing (descending) frequency
to place the fields that occur most often at the top of the list.

7 Repeat these steps for the $Table list box.

10.3.1Using system fields
If you select CustomerID in $Field, you will see which tables the field appears in,
along with other system fields information.

10.4 The system table
It is possible to create tables of various types in QlikView, containing widely differ-
ent kinds of data, so why not use the same technique to investigate the relationships
between the tables in our database.

The system table is a pivot table that illustrates the relationships and connections
between tables and fields in QlikView’s internal database.

We will proceed by creating such a table on our system sheet. The more complicated
the data structure, the greater the use of the table.

Figure 29. The result of selecting CustomerID in the list box $Field
60 ©1996 - 2008 QlikTech International

DATA STRUCTURE OF THE LOADED DATA
Do:
1 In your QlikView application, make sure you are on the System sheet.

2 Right-click in the sheet and select new sheet object, System Table. A pivot
table will be created with the dimensions $Field and $Table. The expression
in the chart will be Only($Field). Both dimensions are sorted according to
load order.

10.5 Document Properties: Tables page
This dialog page offers yet another way of looking at the data structure. All tables
and fields included in the QlikView document are listed, along with statistics on each
entity.

Figure 30. The System Table, example
©1996 - 2008 QlikTech International 61

Click on the Export Structure button to export several tab delimited text files contain-
ing this information. These files can then be imported back into QlikView – either
this document or another document – for additional analysis.

Figure 31. Document Properties - Tables page.
62 ©1996 - 2008 QlikTech International

SCRIPTING CONSIDERATIONS
11 SCRIPTING CONSIDERATIONS
When reading data into QlikView, we sometimes encounter complex data structures
that are not straightforward to understand and may perform less efficiently. When this
happens you need to know how to work around the problem. In this chapter we will
encounter some of the common problems in QlikView and introduce a method for
solving these problems.

11.1 Reading the Shipments table
There is one table left in the QWT database and it is time to read this now.

Do:
1 Go to the Script Editor and go to the Dimensions tab.

2 Click Select to go to the Create Select Statement dialog. Select the Shipments
table and read all fields into the QlikView document with a preceding load.

3 Save and Reload the document.

4 Open up the Table Viewer and structure the tables so that the connections are
easy to follow.
©1996 - 2008 QlikTech International 63

As you can see in the Table Viewer and in the figure below, the structure has changed
quite drastically since the last time we looked at the table structure. Instead of having
two fact tables in Orders and OrderDetails, we now have a $Syn 3 Table that con-
nects with the fact and dimension tables.

11.2 Synthetic key tables
It is undesirable to have multiple common keys across multiple tables in a QlikView
data structure. This may cause QlikView to use complex keys (a.k.a. synthetic keys)
to generate the connections in the data structure. Synthetic keys are generally
resource heavy and may slow down calculations and, in extreme cases, overload an
application. They also make a document harder to understand and maintain. There
are some cases where synthetic keys cannot be avoided (e.g. Interval Match tables),
but, in general, synthetic keys should always be eliminated, if possible.

When we loaded the Shipments table, several fields were common to the OrderDe-
tails table and the Shipments table and this caused QlikView to create a new field,
$Syn 1. In addition, several fields were common to the Orders table and the Ship-

Figure 32. The Table Viewer after loading the Shipments table.
64 ©1996 - 2008 QlikTech International

SCRIPTING CONSIDERATIONS
ments table and caused QlikView to generate a $Syn 2 and $Syn 3 field. It is not
uncommon to get a data structure like this in QlikView; but, because of the reasons
above, you should always try to avoid this kind of structure. There are several ways
to eliminate synthetic keys in QlikView and it is important to know the data structure
and the data sources to create the correct solution.

Use the Business Plan and review the rules for the Shipments table. This information
can be found on the “Shipments Data” page of the Busienss Plan. We can see that
there is a one to one relationship between the OrderDetails table and the Shipments
table. We can also see that the field ProductID gets the values directly from the
OrderDetails Table. Since this is the case, we can remove the ProductID field from
the Shipments table. To get a unique key between the OrderDetails table and the
Shipments table, we can create a composite key of the remaining common fields
OrderID and LineNo.

Do:
1 Go to the Script Editor.
2 Locate the Shipments table.
3 Make a comment of the field ProductID.

4 Create a composite field of OrderID and LineNo using the “&” to concate-
nate the fields. Make sure to put a separator in between the fields as well.
Name the key field OrderLineKey.

5 Use the autonumber function to get a number instead of text for the key
field. This is especially useful when working with large tables since numeric
values takes up less memory than text values.

Comment the fields OrderID and LineNo. This is necessary to avoid the syn-
thetic key and have only one (OrderLineKey) connecting field between the
Shipments and the OrderDetails tables.

The script should look as follows:
//*************** Shipments table ***************
Shipments:
LOAD CustomerID,

EmployeeID,
//LineNo,
//OrderID,
autonumber(OrderID &'-'& LineNo) as
OrderLineKey,
//ProductID,
©1996 - 2008 QlikTech International 65

ShipmentDate,
ShipperID;

SQL SELECT *
FROM Shipments;

6 Create the same OrderLineKey in the OrderDetails table.

 autonumber(OrderID &'-'& LineNo) as OrderLineKey

7 Save and Reload the script.

8 QlikView warns that circular references, or loops, have been found in the
table structure. Click OK.

When working with complicated data structures containing many tables, it is possible
to create a situation where the interpretation of the data is uncertain. QlikView has
been developed in such a way that it can handle the most complicated structures and
automatically interpret them correctly, but there are some limitations. It is important
that you are aware of these limitations and know how to solve the problem of loops
when they arise.

We will soon return to the generation of our script, but first let us look at loops and
their consequences.

11.3 Circular references
Consider the following example, which consists of a simple data structure with three
tables:

Customers Orders Budget
Customer ID CustomerID Country
Country ProductID ProductID

OrderValue

Figure 33. Warning about circular references
66 ©1996 - 2008 QlikTech International

SCRIPTING CONSIDERATIONS
As you can see, it is possible to literally ”go around in circles.” In this example, it is
easy to detect a circular reference, but it may be more difficult in complicated struc-
tures.

Data structures of this kind should be avoided, as they may lead to ambiguous inter-
pretation of the data.

Unfortunately, circular references are quite common, and it is not unusual to come
across them. They are sometimes caused by poor database design, but in some cases
they are unavoidable.

In some cases, a field (or a table) may have several roles, for example, a company
may be both a supplier and a customer. The field (or table) must then be loaded into
QlikView twice using different names.

QlikView solves the problem of circular references by defining a loosely coupled
table. If QlikView finds a loop while executing the load script, a warning dialog will
be shown and one or more tables will be set to loosely coupled. QlikView will
attempt to make the longest table loosely coupled. This is often a transaction table. If
you wish to deviate from the QlikView default, you can define the table to be loosely
coupled using a loosen table statement in the script. It is also possible to change the
settings for loosely coupled tables interactively after the execution of the script under
the Tables tab in Document Properties. You can also determine which tables in your
structure are set to loosely coupled by using the Table Viewer utility. Loosely coupled
tables will show dotted lines as their connectors.

To avoid circular references and loosely coupled tables, you must rename the fields
that cause the loops, or sometimes you will have to join tables together into one table
to solve the circular reference.

11.4 Causes of circular references
Many times, circular structures will result from unintended key fields in the data
load. In our QlikView document we received a warning for circular references
because many identically named fields occurred in different tables. This results in
QlikView field associations we do not want to occur. This can be seen by studying
the Table Viewer.

Do:
1 Open up the Table Viewer and arrange the tables for easy viewing.

As can be seen quite clearly in the following example, we have a circular ref-
erence between the Orders, Shipments and OrderDetails tables. Your tables
©1996 - 2008 QlikTech International 67

may look slightly different. In this case, it is easy to see the connections
between the tables going round in a circle. We can also see that the table
OrderDetails has become loosely coupled. Loosely coupled tables will be
explained later in this chapter.

To remove the circular reference, we need to study the data sources again.
Go back to page 12 of our Business Intelligence plan. In the rules, we can
see that all the fields that are common between the Shipments table and the
Orders table originate in the Orders table; therefore, in our QlikView docu-
ment it is safe for us to just comment or remove these fields from the Ship-
ments table. We can do this because of the data structure of our data. If not
all values existed in the Orders table, we would have had to use another
solution to the problem with the circular reference.

2 Go to the Script Editor and find the table Shipments.

3 Comment out or remove the fields CustomerID, EmployeeID, ProductID
and ShipperID. Make sure that the commas and semi colon are correct.

Once this step is complete, the Shipments table portion of the script should
look like the following example:

 //*************** Shipments table ***************
LOAD //CustomerID,

//EmployeeID,

Figure 34. Circular references as shown in Table Viewer
68 ©1996 - 2008 QlikTech International

SCRIPTING CONSIDERATIONS
//LineNo,
//OrderID,
//ProductID,
autonumber(OrderID & '-' & LineNo) as
OrderLineKey,
ShipmentDate;
//ShipperID;

SQL SELECT *
FROM Shipments;

4 Save the document and Reload the script.

5 Open the Table Viewer and look at the result. The circular reference should
have disappeared and there should be no synthetic keys.

11.5 Loosely Coupled Tables
In a loosely coupled table, the associative logic in QlikView is internally discon-
nected. This means that selections in the non-key fields in the table do not affect
other tables or other fields within this table. In certain cases, this can be quite effec-
tive, although in our case, we do not want to implement this feature. To understand
the concept of loosely coupled, consider the example below:

Below we can see table boxes created by three different tables.

If we choose the value 2 in field B, the following will occur:

The selection affects all the tables. Let us now retain this value, but instead make
Table 2 loosely coupled. This means that the logic between fields A and C is discon-
nected. The result is:

Note that Table 2 shown previously is a table box and not the actual table. The table
box shows all the possible combinations of columns. As there is no logical connec-
tion between fields A and C, all the possible combinations of their values are shown.
©1996 - 2008 QlikTech International 69

Since Table 2 is loosely coupled, the selections made in Table 1 will not propagate
through to Table 3.
70 ©1996 - 2008 QlikTech International

 ADDING TEXT DATA
12 ADDING TEXT DATA
According to our project plan, there are additional data tables to load. These tables
are not in database format, so we will now start to use the Table Files Wizard to create
the QlikView LOAD statements. The sources this time are two Excel spreadsheets.
These files contain data on employees and offices. There is also an XML file holding
information on suppliers. Let us start by looking at the data sources.

12.1 Employees
We will take data on the employees from the Excel file EmpOff.xls and the
Employee worksheet (in the folder DataSources). We will first open the file in Excel,
to take a look at its contents.

The key in this table is the field EmpID, which will connect the table to the rest of the
data we have loaded. Note that we will need to rename this field to get a connection
to the rest of the data.

Figure 35. The Employees Table
©1996 - 2008 QlikTech International 71

12.2 Offices
Data on the company's offices will also be taken from the Excel file EmpOff.xls but
from the Office worksheet, which is the second worksheet in the Excel file
EmpOff.xls.

The key in this table is Office and the values in this field will be associated with val-
ues in the Office field in the Employee table.

12.3 Script generation using the Table Files
Wizard

We will now continue with the generation of our load script, by adding QlikView
LOAD statements for the two spreadsheets that we just studied.

Do:
To create these statements, we will use the Table File Wizard in the Edit Script
dialog.

1 Open the Edit Script dialog from the menu or toolbar.

2 Add a new tab and name it File Data.

3 Go to the Data From Files grouping at the bottom of the Data tab.

4 Make sure that the Relative Paths check box is checked.

5 Ensure that the Wizard check box is checked and then click the Table Files…
button to open the Open Local Files dialog.

6 Browse to the file EmpOff.xls in the folder DataSources and click Open.

7 Check that the default settings in the Table Files Wizard are correct. They
should be as follows:

Figure 36. The Office table
72 ©1996 - 2008 QlikTech International

 ADDING TEXT DATA
Type: Excel Files (BIFF)

Table: Employee$

Options | Labels: Embedded Labels

An illustration follows to use as a comparison to your settings.

8 Click on the field name EmpID and change the name to EmployeeID.

9 Hit ENTER to make the change permanent.

10 Click Finish to return to the Edit Script dialog and view the new LOAD state-
ment generated for the Employee data.

11 Now, add your comments to this data load, and label the table as Employee.
You can also delete the Directory; statement, which is generated because of
the Relative Paths specification. We will not need these statements in our
script.

12 In addition, according to our project plan, we need to provide an [Employee
Hire Year] field. Add this field now, using the year function on the [Hire
Date] field. Name the new field HireYear.

13 The script statements should look as follows:
//*************** Employees table ***************
Employees:
LOAD EmpID AS EmployeeID,

[Last Name],
[First Name],

Figure 37. The Table Files Wizard
©1996 - 2008 QlikTech International 73

Note: Field names containing spaces are enclosed in square brackets (quotation
marks " " can also be used), e.g. [Last Name].

Title,
[Hire Date],
Year([Hire Date]) AS HireYear,
Office,
Extension,
[Reports To],
[Year Salary]
FROM Datasources\EmpOff.xls (biff, embedded
labels, table is [Employee$]);

14 Now, follow the same procedure for the Office data. This table is located in
the second worksheet of the Excel file EmpOff.xls. When you open the Table
Files Wizard, be sure to select the Excel spreadsheet Office$ in the box
labeled Table on the first page of the wizard.

15 Add a table comment, and label the LOAD statement Offices. The following
statement should now be included in your script.

//*************** Offices table ***************
Offices:
LOAD Office,

OfficeAddress,
OfficePostalCode,
OfficeCity,
OfficeStateProvince,

Figure 38. Selecting a different worksheet in an Excel file.
74 ©1996 - 2008 QlikTech International

 ADDING TEXT DATA
OfficePhone,
OfficeFax,
OfficeCountry

FROM Datasources\EmpOff.xls (biff, embedded labels,
table
is [Office$]);

16 Save and Reload the document.
©1996 - 2008 QlikTech International 75

76 ©1996 - 2008 QlikTech International

LOADING AN XML FILE
13 LOADING AN XML FILE
The acronym XML stands for Extensible Markup Language. It is a simple, flexible
text format. Originally it was designed to meet the challenges of large scale elec-
tronic publishing. Today, XML is also being used in a wide variety of ways to store
data.

13.1 Loading a text file in XML Format

Do:
1 Open the Edit Script dialog from the menu or toolbar.

2 Position your cursor at the bottom of the Dimensions tab, and add a comment
for the Suppliers data table load.

3 Ensure that the Wizard check box is checked and then click the XML Files…
button to open the Table Files Wizard: Source dialog.

4 Browse to the file suppliers.xml in the folder DataSources and click Open.
5 Press next to see how QlikView interprets the XML.

6 Select the Tables tab to see what tables the XML file contains.
©1996 - 2008 QlikTech International 77

7 Make sure the Suppliers/_empty_ table is selected. If you look in the fields
window, this table should contain 29 rows.

8 Make sure that the table is interpreted correctly and click Finish.

9 There have been some additional tables added to the script that we do not
want in the script. Remove all extra tables so that the Suppliers table script
looks as follows.

10 Also, remove the %Key__9C1185A5C5E9FC54 field (if it exists) since this
is a field generated by the XML and of no use in our QlikView document.
The following code should now be part of your script.

//*************** Suppliers ***************
Suppliers:
LOAD SupplierID,

CompanyName,
ContactName,
Address,
City,
PostalCode,
Country,
Phone,
Fax

Figure 39. The XML File Wizard
78 ©1996 - 2008 QlikTech International

LOADING AN XML FILE
FROM Datasources\Suppliers.xml (XmlSimple, Table is
[Suppliers/_empty_]);

13.2 Renaming fields using the Qualify
statement

Remember, QlikView associates fields with the same name. If two tables have sev-
eral fields in common, QlikView may create complex keys to associate the tables (see
“Synthetic key tables” on page 64).

Suppliers.xml has several fields in common with the Customers table in the Access
database. These fields should not be associated with each other, and some of the
fields in suppliers.xml must be renamed. The only common field should be Suppli-
erID, which is also found in the Products table.

Following is a visual illustration of these common fields and the synthetic keys they
created (follow the dotted connection lines to see the common fields):

Instead of renaming each field using the AS or other statements, the simplest solution
is to have the table name precede the field name (as is commonly seen in most data-
base utilities.) This is easily accomplished by using a special statement in QlikView

Figure 40. The synthetic keys created by common fields in the Suppliers data source.
©1996 - 2008 QlikTech International 79

that qualifies all the field names with the name of the table when they are loaded. The
new field names will thus be table name.field name. As we want to rename all the
fields except SupplierID, we will use the * (wildcard character).

Do:

Tip: The qualify statement can be used with all types of tables and will be active
until it is cancelled with an Unqualify statement. This can be useful in situations
where you have many tables containing the same field names.

1 Enter the following lines of code before the suppliers table LOAD.

QUALIFY *;
UNQUALIFY SupplierID;

As SupplierID is to be connected to another table, it should not have the
table qualifier. This is specified using the statement UNQUALIFY SupplierID.

2 After the Suppliers table has been loaded, we must add the following state-
ment so that all the fields loaded after this one do not have the table qualifier.

 UNQUALIFY *;

3 Save and Reload the document.
80 ©1996 - 2008 QlikTech International

LOADING AN XML FILE
4 Open the Table Viewer. The synthetic keys should be gone and you will now
see the results of adding the table name to the field name.

Figure 41. The Table Viewer at this stage of development.
©1996 - 2008 QlikTech International 81

82 ©1996 - 2008 QlikTech International

KEY FIELDS
14 KEY FIELDS
Remember, key fields are fields that are common to one or more tables (associated
fields). When a field occurs in more than one table, it may be unclear to QlikView
which table to use to calculate the frequency of the data.

14.1 Example predicament
Assume that we have a table called Orders with 200 records containing order num-
bers (OrderID). We also have a table called OrderDetails, which contains 1000
records of order numbers. These numbers are also found in the first table.

The two tables will be associated via the common field OrderID. The problem arises
when you want to know the exact number of unique OrderID’s. Is it 1000, 200 or
1200? We know, based on the information we have, that the correct answer is 200
unique OrderID’s, but this is not always clear to QlikView.

In this case, QlikView will look for a main table. It may choose the right one, but in
most cases the program will have to guess.

As guesses can lead to serious consequences, QlikView has been designed so that it
does not allow certain operations if there is any doubt as to which table is the main
table. These operations include, for instance, calculating the frequency.

14.2 How does this affect you?
You should bear in mind the following limitations when working with key fields.
• In some cases, it is not possible to obtain information on frequency in a list box

that shows key fields. For example, you will see that the checkbox Show Fre-
quency is inactivated for the CustomerID and EmployeeID fields.

• In most cases, it will not be possible to use functions for calculating the fre-
quency of key fields in charts (Count, etc.) You must use a Distinct qualifier in
these expressions.

• In general, it is good practice to avoid using key fields in list boxes and expres-
sions. Key fields should be used for linking tables together, and not for display-
ing data in a QlikView document. In the next section we will learn how you can
still use the values needed in your document as well as use key fields for linking.

Tip: Look above the Edit window when creating an expression. If you get the
error message Dangerous Field Name(s): Fieldname you have used a Key field in
the expression that you are not allowed to use in that type of calculation.
©1996 - 2008 QlikTech International 83

14.3 Loading a field into a table multiple times
There is a relatively simple solution to the problem of key fields and the calculation
of data frequency. You load the field you want to use to calculate the frequency once
again under another name.

The problem we described above can thus be solved in the following way:

LOAD…,
OrderID,
OrderID AS OrderIDCount,

FROM Orders;

You can now use the new field (not associated) in a list box that shows the frequency
or a chart with functions to calculate the frequency. The new field name can easily be
concealed by giving it another label so that it will not confuse users of the document.
If you create a calculated field the data is assumed to be unique. If it is not, you need
to perform a distinct count.

This solution works well in smaller applications, but if you have applications with
much data, this solution can consume memory since you often want to count distinct
on these fields.

14.4 Using a record counter on key fields
Instead of using the key field a second time, we can use a record counter in the table
where we want to make the calculation. A record counter is simply the number 1 for
each row in the table connected to the ID field of the table. For instance, if we want to
count the number of orders, we create a record counter in the Orders table and use
the sum of the record counter in charts.

The record counter can be created in the following way:

LOAD …,
OrderID,
1 AS OrderRecordCounter,
…

FROM Orders;

This way of solving the problem is more efficient when working with large amounts
of data since a sum of a numeric value takes very little power compared to a count of
a value.

Note: You need to be careful when creating both Count Fields and Record Coun-
ters so that you create the new field in the correct table.
84 ©1996 - 2008 QlikTech International

KEY FIELDS
14.5 Does the chart really show what I want it
to?

When you create a chart in QlikView, it is naturally important to check that it really
shows what you want it to show. Always choose expressions that are suitable in each
case. QlikView has a number of expressions. Below is a summary of these expres-
sions together with what they show.

Salesperson Article CustomerNo Quantity

Karl A 10 100

Janne A 101 200

Ola B 10 250

Karl B 111 350

Expression Result

Total Count(Salesperson) 4

Total Count(Distinct Salesperson) 3

Total Count(Article 4

Total Count(Distinct Article) 2

Num(Quantity) 4

Sum(Quantity) 900
©1996 - 2008 QlikTech International 85

86 ©1996 - 2008 QlikTech International

EXERCISES
15 EXERCISES

Do:
1 Modify the script in your QlikView document to include a field named

ProductIDRecordCounter, based on the field ProductID. You can look at
how to create this field in chapter Key Fields . The new field will be used to
produce the required Key Measure, Total Products Sold, as specified in our
project plan. Think carefully which table you should create the
ProductIDRecordCounter field in before you create the field.

2 Modify the script in your QlikView document to include a field named
OrderIDCounter. The new field will be used to sum up the total number of
Orders. Make sure to create the record counter field in the correct table.

3 Create a pivot table chart, with the dimensions CompanyName, Product-
Name and Month. The expression should calculate the distinct number of
products sold, and should be labeled [Total Products Sold]. Enable Show
Partial Sums by CompanyName, and Month. This option can be found in the
Presentation tab.

4 Add a new expression for the number of Orders placed. Use the OrderID-
Counter field for this calculation. Label this expression [Number of Orders].

5 Sort the CompanyName and ProductName dimensions by the same expres-
sion as [Number of Orders], in Descending order.

Figure 42. The resulting pivot table
©1996 - 2008 QlikTech International 87

88 ©1996 - 2008 QlikTech International

GENERATING DATA IN THE QLIKVIEW SCRIPT
16 GENERATING DATA IN THE
QLIKVIEW SCRIPT

In this chapter we will look at some different methods of creating data directly in the
QlikView script. We will look at how we can use tables read into QlikView previ-
ously in the script and we will also look at how we can generate data directly in
QlikView.

In our project plan, one of the Key Dimensions listed is Sales Person. Since there is
no field included in our source data for Sales Person, we will need to generate this
field in QlikView during the data load. In this chapter, we will practice resident loads
and conditional loads, as well as introduce the concept of creating multiple logical
tables in QlikView based on a single source data table.

16.1 Resident Load
In this section, we will learn how to create a new logical table in QlikView, based on
a previously loaded (resident) table. As we can see in the project plan, on page , the
SalesPerson is a concatenated field of First Name and Last Name in the Employees
table. We will start by creating this field in the Employees table since we are not
really interested in only the first or the last names of our employees.

Do:
1 Open the Edit Script dialog.

2 Find the Employees table on the tab File Data and replace the fields First
Name and Last Name with the following row:

[First Name]&' '&[Last Name] AS Name,

3 Add a new tab to the script and name the new tab Sales Person.

We will now add another table load to the script, but this time, instead of
using a wizard to create the code, we will copy existing code, and modify it.
First, locate the Employee table load in the File Data script tab. Copy (high-
light and CTRL+C, or Edit … Copy) all the lines for this statement. Then
switch back to the Sales Person tab, and Paste (CTRL+V, or Edit … Paste).
You should now have a duplicate of the Employee table load in the new tab.
Edit the LOAD statement as follows:

4 Change the table name to SalesPersons.
©1996 - 2008 QlikTech International 89

5 Change the rename of EmpID to use the QlikView field name of Employ-
eeID (we are no longer reading from the source data).

6 Remove the First Name and Last Name concatenation operation of the field
Name and use the field SalesPersons.

7 Remove the [Hire Date], Office, Extension, [Reports To], and [Year Salary]
fields from the LOAD statement.

8 Remove the comma from the Title field (it is now the last field in this load)
and rename this field to SalesTitle.

9 Remove the FROM specification, since we will not be reading from a disk
file for this load.

10 Add a RESIDENT specification, pointing to the resident table we wish to load
from, at the same location as the earlier FROM.

Your script should now look as follows:
//************** SalesPersons table **************
SalesPersons:
LOAD
EmployeeID,
 Name AS SalesPerson,
 Title AS SalesTitle
RESIDENT Employees;

Now we want to limit the load of all Employee data records to just those we
can identify as a sales person. To do this, we need to make another change to
 the script code. First, remove the semicolon (;) located after Resident
Employee. Next, add the where condition after the Resident line as follows:

WHERE Title LIKE 'Sales*' or Title='President';

11 The LIKE operator works with the wildcard (*) and searches the field and
finds all values that start with Sales.

12 Save and Reload the document. Add list boxes for Name, Title, and SalesTitle
to the Main sheet. Select All in the SalesTitle field, and notice that only some
of the Name and Title values are shown as possible values (white). For a
value of the original Employees table to be included in the new logical Sales-
Persons table, it must satisfy at least one of the conditions we have defined.
The first condition is that the value in the field Title should start with Sales.
The second condition is that the field Title is equal to President.

13 Save your document.
90 ©1996 - 2008 QlikTech International

GENERATING DATA IN THE QLIKVIEW SCRIPT
16.2 Advanced – Using Orders to determine
Sales Person.

We just used a rather simplistic method that allowed us to sample the field values
required for the field SalesPersons. This method is perfectly adequate, but what hap-
pens if we get Employees that are involved in selling and have a Title not beginning
with Sales? To get away from this problem, we can obtain the same result by using a
more elegant solution.

We begin by observing that all sales people are included in our sales data. It follows
that they must occur in the field EmployeeID in the table Orders. We begin by creat-
ing a new field EmployeeSalesID in the script where Orders table is being loaded.
By referring to this field later in the script, we can insure that all employees that have
been credited with sales will be listed in the SalesPerson field.

The following steps will walk us through this process.

Do:
1 Add the following script line in the Orders table LOAD statement immedi-

ately after the loading of the EmployeeID field.
EmployeeID as EmployeeSalesID,

2 Next, comment the WHERE condition in the SalesPerson table LOAD state-
ment and create a new WHERE condition to use the QlikView exists function.

SalesPersons:
LOAD EmployeeID,

Name AS SalesPerson,
Title AS SalesTitle
RESIDENT Employees

//WHERE Title LIKE 'Sales*' or Title='President';
WHERE exists(EmployeeSalesID, EmployeeID);

The condition in the Where clause checks that the loaded data has matching
values in the field EmployeeSalesID. As the name implies, the exists func-
tion can be used to check whether a specific field value exists in a specified
field of the data loaded so far. Remember to be careful of the order of your
script statements, since the reference field should be populated prior to
checking for values. In this example, the Orders table must be loaded prior
to the Sales_Person table for this condition to work properly.

3 Save and close the Edit Script dialog.
©1996 - 2008 QlikTech International 91

4 Verify the functionality of your script by adding an OrderID list box, right
click and choose Select All. The associated values in the other list boxes
should easily be apparent from what we know of this data.

16.3 Creating data using Load Inline and
Autogenerate

There are two (2) additional time dimension fields required in our QlikView docu-
ment according to the Trends section of our project plan. We need to add Quarter
and MonthYear. We will use a fairly simple technique for generating Quarter that will
introduce the concepts of Load Inline, and autogenerate tables. For MonthYear, we
will introduce some additional QlikView date functions, as well as how to specify
date formats.

16.4 Inline tables
You may remember that earlier in the course, we talked about several ways to load
data in the QlikView script. We have already been introduced to many of these tech-
niques, and now we will meet a new one.

In some cases, it may be advantageous to enter table data directly in the script. This is
done with the aid of a so-called load inline statement.

Do:
1 Open the Edit Script dialog from the menu or toolbar.

2 Position your cursor near the top after the Connect statement on the Main tab.
Add a comment named Quarters Defined for loading Quarter data.

3 Add the following statement to the script:
Quarters:
LOAD* INLINE [

Month, Quarter
1,Q1
2,Q1
3,Q1
4,Q2
5,Q2
6,Q2
7,Q3
8,Q3
9,Q3
92 ©1996 - 2008 QlikTech International

GENERATING DATA IN THE QLIKVIEW SCRIPT
10,Q4
11,Q4
12,Q4];

Notice that a load inline contains the field names and data enclosed by
square brackets ([]). Also notice the field names are located on the first line,
and that data values are separated by commas. The table entered in the script
associates numeric months to the corresponding quarter. When we run the
script, a new field (Quarter) is generated.

TIP: Inline tables can also be generated by means of the Inline Wizard that is
opened from a button in the Inline Data group in the script editor.

4 Save and Reload the document.

5 Add the new Quarters field to the Main sheet of your QlikView document
and select a value to see the associated orders and other related data.

At this time we will review the script we have created up to this point. The ///$tab will
indicate the start of each tab in the Script Editor.

///$tab Main
SET ThousandSep=',';
SET DecimalSep='.';
SET MoneyThousandSep=',';
SET MoneyDecimalSep='.';
SET MoneyFormat='$#,##0.00;($#,##0.00)';
SET TimeFormat='h:mm:ss TT';
SET DateFormat='M/D/YYYY';
SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';
SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;

Figure 43. Quarters List Box
©1996 - 2008 QlikTech International 93

Aug;Sep;Oct;Nov;Dec';
SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

CONNECT TO [Provider=Microsoft.Jet.OLEDB.4.0;User
ID=Admin;Data Source=\Datasources\QWT.mdb;

//************** Quarters defined **************
Quarters:
LOAD * INLINE [

Month, Quarter
1,Q1
2,Q1
3,Q1
4,Q2
5,Q2
6,Q2
7,Q3
8,Q3
9,Q3
10,Q4
11,Q4
12,Q4];

///$tab Dimensions
//************** Customers table **************
Customers:
LOAD Address,

City,
CompanyName,
ContactName,
Country,
CustomerID,
DivisionID,
Fax,
Phone,
PostalCode,
StateProvince;
SQL SELECT *
FROM Customers;

//************** Shippers table **************
Shippers:
LOAD CompanyName AS Shippers,

ShipperID;
94 ©1996 - 2008 QlikTech International

GENERATING DATA IN THE QLIKVIEW SCRIPT
SQL SELECT *
FROM Shippers;

//************** Products table **************
Products:
LOAD CategoryID,

ProductID,
ProductName,
QuantityPerUnit,
SupplierID,
UnitCost,
//UnitPrice,
UnitsInStock,
UnitsOnOrder;

SQL SELECT *
FROM Products;

//************** Categories table **************
Categories:
LOAD CategoryID,

CategoryName,
Description;

SQL SELECT *
FROM Categories;

//************** Divisions table **************
Divisions:
LOAD DivisionID,

DivisionName;
SQL SELECT *
FROM Divisions;

//************** Shipments table **************
Shipments:
LOAD //CustomerID,

//EmployeeID,
//LineNo,
//OrderID,
autonumber(OrderID & '-' & LineNo) AS
OrderLineKey,
//ProductID,
ShipmentDate;
//ShipperID;

SQL SELECT *
FROM Shipments;

//************** Suppliers table **************
QUALIFY *;
©1996 - 2008 QlikTech International 95

UNQUALIFY SupplierID;
Suppliers:
LOAD SupplierID,

CompanyName,
ContactName,
Address,
City,
PostalCode,
Country,
Phone,
Fax

FROM Suppliers.xml (XmlSimple, Table is [Suppliers/
empty]);
UNQUALIFY *;

///$tab Orders
//************** Orders table **************
Orders:
LOAD CustomerID,

EmployeeID,
EmployeeID AS EmployeeSalesID,
Freight,
OrderDate,
Year(OrderDate) AS Year,
Month(OrderDate) AS Month,
Day(OrderDate) AS Day,
OrderID,
OrderID AS OrderIDCounter,
ShipperID;

SQL SELECT *
FROM Orders;

//************** Order Details table **************
OrderDetails:
LOAD Discount,

LineNo,
OrderID,
autonumber(OrderID & '-' & LineNo) AS
OrderLineKey,
ProductID,
1 AS ProductIDRecordCounter,
Quantity,
UnitPrice,
UnitPrice * Quantity * (1-Discount) AS
LineSalesAmount;
96 ©1996 - 2008 QlikTech International

GENERATING DATA IN THE QLIKVIEW SCRIPT
SQL SELECT *
FROM `Order Details`;

///$tab File Data
//************** Employees table **************
Employees:
LOAD EmpID AS EmployeeID,

//[Last Name],
//[First Name],
[First Name] & ' ' & [Last Name] AS Name,
Title,
[Hire Date],
Year([Hire Date]) AS HireYear,
Office,
Extension,
[Reports To],
[Year Salary]

FROM Datasources\EmpOff.xls (biff, embedded labels,
table is [Employee$]);

//************** Offices table **************
Offices:
LOAD Office,

OfficeAddress,
OfficePostalCode,
OfficeCity,
OfficeStateProvince,
OfficePhone,
OfficeFax,
OfficeCountry

FROM Datasources\EmpOff.xls (biff, embedded labels,
table is [Office$]);

///$tab Sales Person
//************** SalesPersons table **************
SalesPersons:
LOAD EmployeeID,

Name AS SalesPerson,
Title AS SalesTitle

RESIDENT Employees
//WHERE Title LIKE 'Sales*' OR Title = 'President';
WHERE exists (EmployeeSalesID, EmployeeID);
©1996 - 2008 QlikTech International 97

16.5 Autogenerate tables
Another way to generate data in QlikView is to use the AUTOGENERATE clause on
the LOAD statement. Specifying AUTOGENERATE on a LOAD statement will automat-
ically generate a specific number of records. Only constants and parameter-free func-
tions are allowed in an AUTOGENERATE LOAD. Quite often, the recno() or rowno()
functions are used to provide a unique number for each row.

Do:
1 Open the Edit Script dialog from the menu or toolbar.

2 Position your cursor after the Quarters table load we just added in the previ-
ous step on the Main tab. Comment out that LOAD statement, since we will be
replacing it with another alternative. If you add REM in front of the table
label, that will comment the entire statement.

3 Add the following statement to the script:

Quarters:
LOAD

rowno() as Month,
'Q' & Ceil(rowno()/3) as Quarter

AUTOGENERATE(12);

The rowno() function will return the current row number of the QlikView
logical table that is being created, starting with 1. The ceil (ceiling) function
will round the number passed up to the nearest integer. The & character is
used for string concatenation in QlikView.

Remember to use only one of the Quarters load statements, and comment
out the other statement you originally created.

4 Save and Reload the document.
98 ©1996 - 2008 QlikTech International

MAPPING TABLES
17 MAPPING TABLES
Sometimes you need to add an extra field to a table to use a combination of fields
from different tables, or you want to add a field to clean up the data structure.
QlikView has an effective way to add single fields to a table called mapping tables. In
this chapter, we will take a look at how mapping tables work.

17.1 Mapping Quarters to the Orders table
The Quarters table is useful, in that it links our Month data in the Orders table with
the correct Quarter. However, the Month field is now a key field, and this will proba-
bly cause problems later. The following illustrations give us a visual of this dilemma:

Figure 44. Quarters Table key link on Month.

Figure 45. Month field with key indicator in the Available Fields listing.
©1996 - 2008 QlikTech International 99

By changing our Quarters table into a MAPPING table, we will be able to integrate the
Quarters field into the same table as Month (the Orders table).

The MAPPING prefix is used on a LOAD or SELECT statement to create a mapping
table. Tables read via MAPPING LOAD or MAPPING SELECT are treated differently
from other tables. They will be stored in a separate area of memory and used only as
mapping tables during script execution. After script execution they will be automati-
cally dropped.

A mapping table must have two fields, the first one containing comparison values
and the second the desired mapping values. The two fields must be named, but the
names have no relevance in themselves. The field names have no connection to field
names in regular input tables. When mapping tables are used to map a certain field
value or expression, that value will be compared to the values in the first field of the
mapping table. If found, the original value will be replaced by the corresponding
value in the second field of the mapping table. If not found, no replacement is made.

The syntax is:
mapping (load statement | select statement)

Do:
1 Now, let us change the Quarters table load into a mapping load.

2 Go to the Edit Script dialog.

3 Immediately following the Main tab, create a new tab called Mapping
Loads. This should now be the second tab in your Edit Script dialog.

4 Go to the Main tab and cut out the Quarters table you want to use. Make sure
that the other table is commented so that you do not read from two Quarters
tables.

5 Paste the table into the Mapping Loads tab and add _Map to the table name.

6 On the next line, type MAPPING in front of the LOAD statement.

7 When complete, verify that this section of your script resembles the follow-
ing:

Quarters_Map:
MAPPING LOAD

rowno() as Month,
100 ©1996 - 2008 QlikTech International

MAPPING TABLES
'Q' & Ceil(rowno()/3) as Quarter
Autogenerate(12);

Do not save and close just yet. If you reload the data now, you will lose the
Quarters table and field, since mapping tables are temporary. However, we
can use the Quarters_Map table in our script (as long as we use it after it is
defined in the script). To do this, we will use the applymap function.

The syntax is:
 applymap('mapname', expr, [, defaultexpr])

The applymap function maps any expression on a previously loaded mapping
table. Mapname is the name of a mapping table previously loaded by a MAP-
PING LOAD or MAPPING SELECT statement. The name must be quoted with
single quotes. Expr is the expression whose result will be
mapped.Defaultexpr is an optional expression, which will be used as the
default mapping value if the mapping table does not contain any matching
value for expr. If no default is provided, the value of expr is returned as
NULL.

8 Add an applymap function to the Orders table, based on the numeric value of
Month. This function should refer to the Quarters_Map table. Refer to the
syntax example that follows:

applymap('Quarters_Map',num(month(OrderDate)),
null()) AS Quarter,

9 Save and Reload the document.

10 Open the Table Viewer to verify the Quarters table is gone and that there is
now a field called Quarter in the Orders table.

Figure 46. Using ApplyMap to embed fields into another table
©1996 - 2008 QlikTech International 101

17.2 MonthYear
We will complete our time dimension fields by creating a new field that makes every
month unique. There are, of course, several ways to accomplish this. In this course,
we will create the field MonthYear by using QlikView date functions based on the
OrderDate field, along with a date formatting function to provide the correct display
format for our new month field. Open the Edit Script dialog from the menu or toolbar.

Do:
1 Locate the Orders table LOAD statement on the Orders tab.

2 Immediately following the applymap… as Quarter field line, create a
new field named MonthYear in the LOAD statement for the table Orders, as
follows:

date(monthstart(OrderDate),'MMM-YYYY') AS MonthYear,

The monthstart function returns the first day of the month of the OrderDate
value. The date function then formats this value into a 3-character month
name, followed by a 4-digit year. Since QlikView stores this field as both a
text string (the format we just specified) and as a numeric, it can be sorted
numerically, as you would expect.

The complete Orders table LOAD statement should now look as follows. Be
sure your script syntax matches this. Note, your Quarter and MonthYear
fields line will likely fit on a single line instead of wrapping as seen below.

//*************** Orders table ***************
Orders:
LOAD CustomerID,

EmployeeID,
EmployeeID AS EmployeeSalesID,
Freight,
OrderDate,
year(OrderDate) AS Year,
month(OrderDate) AS Month,
day(OrderDate) AS Day,
applymap('Quarters_Map', num(month(OrderDate)),
null()) AS Quarter,
date(monthstart(OrderDate), 'MMM-YYYY') AS
 MonthYear,
OrderID,
OrderID AS OrderIDCounter,
 ShipperID;
102 ©1996 - 2008 QlikTech International

MAPPING TABLES
SQL SELECT *
FROM Orders;

3 Save and Reload the script.

4 Now, replace the Month dimension in the pivot table you created in the set of
exercises in chapter 15, with the MonthYear field. You will have to set the
properties for this field again as they were set for Month. (See the exercises
in chapter 15 for guidance.)

5 In the Presentation tab of the Chart Properties dialog, select the MonthYear
dimension, then enable the Show Partial Sums option.

17.3 Cleaning up the table structure
It is often desirable to minimize the number of tables in the QlikView structure. This
is because it takes power to make calculations between tables. If you have tables with
only two fields, it is easy to map those tables to another table and so minimize the
number of tables. Let us look at the Table Viewer and see if there are any tables than
can easily be mapped to another table.

Do:
1 Open up the Table Viewer.
©1996 - 2008 QlikTech International 103

As we can see in the Table Viewer, some tables have only two fields. These
tables could easily be mapped to the connecting tables. Let us start by map-
ping the Shippers table to the Orders table.

2 Open up the Script Editor and go to the Dimensions tab.

3 Cut out the Shippers table and paste it into the Mapping Loads tab beneath
the Quarters mapping script.

4 Change the table referring to the script that follows.
Shippers_Map:
MAPPING LOAD

ShipperID,
CompanyName AS Shipper;

SQL SELECT *
FROM Shippers;

5 Add the following line to the bottom of the Orders table.
applymap('Shippers_Map', ShipperID, 'MISSING') AS
Shipper

The above line of script tells QlikView to use the word MISSING in the Ship-
per field where no matching ShipperID values can be found.

Figure 47. The Table Viewer
104 ©1996 - 2008 QlikTech International

MAPPING TABLES
6 Verify that your Orders table script should resemble the following;
//*************** Orders table ***************
Orders:
LOAD CustomerID,

EmployeeID,
EmployeeID AS EmployeeSalesID,
Freight,
OrderDate,
year(OrderDate) AS Year,
month(OrderDate) AS Month,
day(OrderDate) AS Day,
applymap('Quarters_Map', num(month(OrderDate)),

null()) AS Quarter,
date(monthstart(OrderDate), 'MMM-YYYY') AS

MonthYear,
OrderID,
OrderID AS OrderIDCounter,
 ShipperID,
applymap('Shippers_Map', ShipperID, 'MISSING')

AS Shipper;
SQL SELECT *
FROM Orders;

7 Save the document and Reload the script.

8 Take a look in the Table Viewer to see that in fact the Shipper field is now a
part of the Orders table.

Figure 48. The Shipper field is now part of the Orders table.
©1996 - 2008 QlikTech International 105

106 ©1996 - 2008 QlikTech International

EXERCISES
18 EXERCISES

Do:
1 Map the Divisions table to the Customers table. Make sure to remove the

Divisions table from the Dimensions tab and create a mapping table on the
Mapping Loads tab.

Although script examples are at the bottom of this page, they are for refer-
ence only should you need help. We encourage you to try to add the Mapping
Load and ApplyMap script on your own.

2 Are there any other tables that can be mapped to another table? Check the
Table Viewer. Make sure to look for tables with only two fields. Discuss with
the course Instructor.

//*************** Divisions ***************
Divisions_Map:
MAPPINGLOAD

DivisionID,
DivisionName;

SQL SELECT *
FROM Divisions;

//*************** Customers ***************
Customers:
LOAD Address,

City,
CompanyName,
ContactName,
Country,
CustomerID,
DivisionID,
applymap ('Divisions_Map', DivisionID) as
Division,
Fax,
Phone,
PostalCode,
StateProvince;

SQL SELECT *
FROM Customers;
©1996 - 2008 QlikTech International 107

108 ©1996 - 2008 QlikTech International

CREATING A CALENDAR
19 CREATING A CALENDAR
Sometimes when working with dates, it is better to keep the date fields outside the
fact tables and create them in a table of their own. For instance, you may want to be
able to see all dates, not only dates when something has happened. In that case, you
can get the start and the end date from the fact table and use these dates to create a
calendar table. In this chapter, we will look at how to get the highest and the lowest
date values from the Orders table. We will place these values into variables that we
use to create a Calendar table.

19.1 Getting the Highest and Lowest date from
the Orders table

There are, of course, several ways to get the highest and lowest values from a field in
a table. In this chapter, we are going to work with an IterNo record function in
QlikView that we can use inside a table or, as in this case, to create a variable. When
using IterNo record functions, the sort order of the table is always important. There-
fore, we will start by sorting the Orders table so that we get the dates in the correct
order.

Do:
1 Open the Edit Script dialog and go to the Orders tab.

2 Except for the OrderDate field, remove all Date fields from the Orders table
by commenting them out. The reason for keeping OrderDate is that this will
be the connecting field to the Calendar table.

3 Sort the Orders table by typing the following at the end of the SELECT state-
ment before the semicolon.

ORDER BY OrderDate ASC;

4 The script should look as follows after you have added the Order By state-
ment.

//************** Orders table **************
Orders:
LOAD CustomerID,

EmployeeID,
EmployeeID AS EmployeeSalesID,
Freight,
OrderDate,
©1996 - 2008 QlikTech International 109

//Year(OrderDate) AS Year,
//Month(OrderDate) AS Month,
//Day(OrderDate) AS Day,
//applymap('Quarters_Map',num

(month(OrderDate)),
null()) AS Quarter,
OrderID,
OrderID AS OrderIDCounter,
ShipperID,
applymap('Shippers_Map', ShipperID, 'MISSING')
AS Shipper;

SQL SELECT *
FROM Orders ORDER BY OrderDate ASC;

The ORDER BY statement sets the sort order of the table. You can use one or more
fields in the statement to specify how the table should be sorted. The fields will be
sorted in the order shown with the first field having priority if you have more than
one field. Commas should separate the fields. You can also decide if you want to sort
the fields Ascending or Descending by typing Asc or Desc after the last field.

Once the table has been sorted, we can use the Peek function to get the first and the
last OrderDate from the Orders table.

19.2 Creating variables in the script
We can create variables in the QlikView script to get dynamic values that may change
over time. In this case we will create one variable that holds the first date in the
Orders table, and one variable that holds the last date in the Orders table.

Do:
1 Create a new tab and call it Calendar. It should now be the fifth tab and

should follow the Orders tab.

2 Create a new variable for the first date by typing the following script state-
ment.

LET varMinDate = Num(Peek('OrderDate', 0, 'Orders'));

When creating a variable in QlikView, a SET or a LET statement is often used
to define the variable. The SET statement is used when you want a variable
to hold the string or numeric value that is to the right of the Equal (=) sign.
The LET statement is used when you need to evaluate what is to the right of
the Equal sign.
110 ©1996 - 2008 QlikTech International

CREATING A CALENDAR
The Peek function has the following syntax:
 Peek(‘fieldname’ [, row [, ‘tablename’]]).

The fieldname, is the field that we want to take a value from. Row is the row
number of the value we want to get. 0 is the first row of the table and -1 is
the last row of the table. Tablename is the name of the table where the Field-
name exists.

In our script, we want to find the value in OrderDate on the first row of the
Orders table to get the first date. We can do this since we sorted the table by
OrderDate previously in this chapter.

3 Create a second variable for the last date by typing the following statement.

LET varMaxDate = Num(Peek('OrderDate', -1, 'Orders'));

4 Create a third variable for today by typing the following statement.

LET vToday = num(today());

5 Create a new table by typing the following script into the Script Editor.
//*************** Temporary Calendar ***************
TempCalendar:
LOAD
$(varMinDate)+IterNo()-1 AS Num,
Date($(varMinDate)+IterNo()-1) AS TempDate
AUTOGENERATE (1) WHILE $(varMinDate)+IterNo()-1<=
$(varMaxDate);

The AUTOGENERATE statement creates the table where the numbers of rows
created are dependent on the number of days between the min and the max
date. To get the correct number of dates, we use a control statement called
WHILE. The WHILE statement continues to run the AUTOGENERATE state-
ment as long as the condition after the WHILE statement is true. The WHILE
statement works together with the IterNo function. This is a counter that will
increment by one each time the WHILE statement is evaluated as TRUE. The
IterNo function starts at 1 so you need to subtract 1 from it to start from 0. In
the table just created, we use the IterNo function to create all dates between
the min date and the max date.

6 Save and Reload the script.
©1996 - 2008 QlikTech International 111

19.3 Creating the Master Calendar
Once we have created all the dates needed, we can start creating a Master Calendar
table where we create all the date fields needed. Earlier, we created Year, Month and
Day in the Orders table. Let us create these fields again, and some other date fields
that may be of use in the layout.

Do:
1 Open up the script editor again.

2 Create a MasterCalendar table referring to the script shown below.

//*************** Master Calendar ***************
MasterCalendar:
LOAD TempDate AS OrderDate,

Week(TempDate) AS Week,
Year(TempDate) AS Year,
Month(TempDate) AS Month,
Day(TempDate) AS Day,
Weekday(TempDate) AS WeekDay,
applymap('Quarters_Map', num(month(TempDate)),

null()) AS Quarter,
Date(monthstart(TempDate), 'MMM-YYYY') AS

MonthYear,
Week(TempDate)&'-'&Year(TempDate) AS WeekYear,
Year2Date(TempDate, 0, 1, $(vToday))*-1 AS

CurYTDFlag,
Year2Date(TempDate,-1, 1, $(vToday))*-1 AS

LastYTDFlag
RESIDENT TempCalendar
ORDER BY TempDate ASC;

You will notice we had to rename the TempDate field to OrderDate to get a connec-
tion to the Orders table. Most of the fields are created by date functions that do not
need any further explanation, but we have created two flag fields that can be
explained a bit further. The flag fields are created by using the year2date function.
The syntax of this function is as follows.

year2date(date [, yearoffset [, firstmonth [, todaydate]]])

The year2date function is a Boolean function that returns either -1 or 0. -1 is returned
if the statement is evaluated to true and 0 is returned if the statement is false. The first
part of the function is the date that is to be evaluated. The second part, yearoffset, is
the year that you want to evaluate. If you omit this, the current year will be assumed.
112 ©1996 - 2008 QlikTech International

CREATING A CALENDAR
By specifying a firstmonth between 1 and 12 (1 if omitted), the beginning of the year
may be moved forward to the first day of any month. By specifying a todaydate, you
may move the day used as the upper boundary of the period.

By creating the flag fields CurYTDFlag and LastYTDFlag, we have created fields
that we can use in expressions where we only want to see the results of the current
year and the same period last year.

Before we reload the script, we need to get rid of the TempCalendar table used for
creating the dates. We can do this by using the DROP TABLE statement in the follow-
ing way.

DROP TABLE TempCalendar;

The DROP TABLE statement removes a table entirely from the QlikView database.
©1996 - 2008 QlikTech International 113

114 ©1996 - 2008 QlikTech International

INCLUDE
20 INCLUDE
It is possible to include references to files in a script that themselves contain script or
parts of a script. In this section we will learn how to add, or reference, an already
existing external script file in our load statement. With the include statement this can
easily be done without having to directly duplicate the existing script in our own
script.

Let us first look at what we are going to add to the script.

Open the text file Email.txt located in the Datasources directory using Notepad, or a
similar tool. This file contains the following script.

Rem *** creates e-mail address;

LOAD
EmpID as EmployeeID,
IF((ord("First Name") >= 65 AND ord("First Name") <=
90), chr(ord("First Name")+32),
IF((Left("First Name",1)='Ä' OR Left("First
Name",1)='ä'), chr(97),
IF((Left("First Name",1)='Å' OR Left("First
Name",1)='å'), chr(97),
IF((Left("First Name",1)='Ö' OR Left("First
Name",1)='ö'), chr(111),Left("First Name",1)))))&
IF((ord("Last Name") >= 65 AND ord("Last Name") <=
90), chr(ord("Last Name")+32),
IF((Left("Last Name",1)='Ä' OR Left("First
Name",1)='ä'), chr(97),
IF((Left("Last Name",1)='Å' OR Left("First
Name",1)='å'), chr(97),
IF((Left("Last Name",1)='Ö' OR Left("First
Name",1)='ö'), chr(111), Left("Last Name",1)))))&
IF((ord(Right("Last Name",1)) >= 65 AND
ord(Right("Last Name",1)) <= 90), chr(Right("Last
Name",1))+32,
IF((Right("Last Name",1)='Ä' OR Left("First
Name",1)='ä'), chr(97),
IF((Right("Last Name",1)='Å' OR Left("First
Name",1)='å'), chr(97),
IF((Right("Last Name",1)='Ö' OR Left("First
Name",1)='ö'), chr(111), Right("Last Name",1)))))&
'@'&
IF(Office=1,'stockholm.se',
IF(Office=2,'lund.se',
IF(Office=3,'paris.fr',
©1996 - 2008 QlikTech International 115

IF(Office=4,'nice.fr','seattle.com')))) as "e-mail"
FROM datasources\empoff.xls(ansi, biff, embedded
labels, table is [Employee$]);

This is an example of a complicated load statement, which is mainly based on nested
if statements. In this case, we want to create e-mail addresses from the information
contained in our database. Many conditions must be satisfied, which leads to a com-
plicated LOAD statement that generates a new logical table containing two fields. We
will load EmployeeID and the new field e-mail, the former giving us the association
to the rest of the structure.

The LOAD statement creates a signature consisting of the first letter of the first name,
and the first and last letters of the last name. It also ensures that there are no capital
letters in the signature, only lower case letters. Foreign (Swedish) letters, e.g. å, Å, ä,
Ä, ö and Ö are also removed. Following the signature, @ is appended, followed by
the appropriate server address. The latter is determined by the office in which the
employee works.

We will now include the external file in our load script.

Do:
1 Open the Edit Script dialog from the menu or toolbar

2 Position your cursor at the bottom of the Main tab.

3 Select Include from the Edit menu command.

4 Browse to the file Email.txt located in the Datasources directory, and click
Open. The following line will be added to your script.

$(Include=datasources\Email.txt)

Note that there is no semicolon after the statement but there can be one or
more semicolons located within the included text file.

Note: Any part, or even the entire script can be located in an external Include file.
There can also be multiple Include files in a script.

5 Save and Reload the script.

6 Add a new sheet to the layout, and name it Employees. Add the new field e-
mail as a list box.
116 ©1996 - 2008 QlikTech International

READING BUDGET INTO QLIKVIEW
21 READING BUDGET INTO QLIKVIEW
In the QWT Business Intelligence project plan on page 13, there is a Budget table for
Employees and Offices. We are going to read this into our document. The Budget
table is built as a cross table and we need to convert this when we read it into
QlikView. We will also add a field to the Budget table that allows us to alter the val-
ues of the budget.

21.1 Reading Cross Tables
Let us open the Budget table that is contained in the Excel file. This table does need
some rework to read it into QlikView. Fortunately, QlikView has excellent function-
ality to interpret and change tables so that we do not need to alter the original look of
the Excel file.

Do:
1 Open up the Script Editor.
2 Create a new tab following the Sales Person tab and call it Budget.

3 Click on the Table Files button and open the Budget.xls file.

4 In the Table Files Wizard, start by setting the Header Size to one row.

5 Next, we need to make sure that there are no empty rows in the Office field.
Click on Transform… to transform the table and then click the Fill tab.

6 Click the Fill… button and then Cell Condition. We want the cell to fill if it is
empty. Click OK, OK and OK to return to the Table Files Wizard.

7 Click Next to get to the next tab of the Table Files Wizard.

8 Click on Crosstable… to change the table from a cross table to a normal
table.

9 Answer Yes to the question “Office” is a qualifying field?
A qualifying field in a cross table, is a field that should not be altered during
the Cross table load.

10 Answer Yes to the question “EmployeeID” is a qualifying field?
11 Answer No to the question “2004” is a qualifying field?
©1996 - 2008 QlikTech International 117

2004 is not a qualifying field. This is the first of the fields we want to trans-
form so that the years are placed in one field and the budget values are
placed in another field.

12 Name the Attribute (Year) field BudgetYear.

13 Name the data (Budget values) field BudgetAmount.

14 Click FINISH. You should have the following table in the script.

CROSSTABLE(BudgetYear, BudgetAmount, 2)
LOAD Office,

EmployeeID,
[2004],
[2005],
[2006],
[2007],
[2008]

FROM Datasources\Budget.xls
(biff, header is line, embedded labels, table is
[Sheet1$], filters(Replace(1, top, StrCnd(null))
));

15 Name this table Budgets.

16 Save and Reload the document.

Open the Table Viewer. As you can see, there is a synthetic key between the
Budgets and the Employees table. We want to resolve this key as we did in a
previous chapter. If we look at the Business Plan again, we can see that all
values in the Budget table for Office and Employees should be in the
Employees table. This means that we can resolve this synthetic key by con-
catenating the fields involved into a key field, and just keep them in the
Employees table.

17 Go to the Script Editor.
18 Change the Budget table to the following script. Make sure you change the

CROSSTABLE statement to have only one qualifying field.

Budgets:
CROSSTABLE(BudgetYear, BudgetAmount, 1)
LOAD Office&'-'&EmployeeID AS BudgetKey,

[2004],
[2005],
[2006],
[2007],
[2008]

FROM Datasources\Budget.xls
118 ©1996 - 2008 QlikTech International

READING BUDGET INTO QLIKVIEW
(biff, header is line, embedded labels, table is
[Sheet1$], filters(Replace(1, top, StrCnd(null))
));

19 Go to the File Data tab and add the following line to the top of the Employees
table.

Office&'-'&EmpID AS BudgetKey,

20 Save and Reload the script.

21.2 Adding an Input Field
QlikView has the capability to declare a field as an INPUT field. This means that you
can use this field to enter or alter values. For instance, when comparing a value to the
budget value, you may want to alter the budget up or down so that it fits the expected
numbers better. We will add a field to our Budget table and declare it as an INPUT
FIELD.

Do:
1 Go to the Script Editor and place the cursor right after the SET statements on

the Main tab.

2 Enter the following statement.

INPUTFIELD BudgetPrognosis;

The INPUTFIELD statement tells QlikView that the field will be an INPUT
field. You have to state this in the script before you actually read the field in
a table.

3 Go to the Budget tab and modify the Budgets table into a BudgetsTemp table
as seen below. This will allow us to create the BudgetPrognosis field. By
loading the BudgetAmount values first, we can then use it as a default value
for our Budget Prognosis input field.

BudgetsTemp:
CROSSTABLE(BudgetYear, BudgetAmount, 1)
LOAD Office & '-' & EmployeeID AS BudgetKey,

[2004],
[2005],
[2006],
[2007],
[2008]

FROM Datasources\Budget.xls (biff, header is line,
©1996 - 2008 QlikTech International 119

embedded labels, table is [Sheet1$], filters(
Replace(1, top, StrCnd(null))
));

Budgets:
LOAD *,

BudgetAmount AS BudgetPrognosis
RESIDENT BudgetsTemp;
DROP TABLE BudgetsTemp;

4 Save and Reload the script.

Now, we can use the INPUT field BudgetPrognosis to set different budget
values if we need to alter the budget to correspond to the actual values.

5 Create a new Table Box titled Sales Budget consisting of the following fields:
SalesPerson, BudgetYear, BudgetAmount, and BudgetPrognosis.

6 Move your mouse cursor over the BudgetPrognosis column in the table box.
An entry arrow icon will appear.

7 Click on the Input icon on any row and enter any number.

8 Right-click on the BudgetPrognosis column header. Notice the related
options of Restore Single Value, Restore Possible Values, and Restore All Val-
ues.

Now, we can use the INPUT field BudgetPrognosis to set different budget values if
we need to alter the budget to correspond to the actual values.
120 ©1996 - 2008 QlikTech International

ADVANCED SCRIPTING
22 ADVANCED SCRIPTING
Open the Business Intelligence Plan to page 3. There are several key measures that
have not yet been created. We need to calculate those key measures in the script to
satisfy the requirements of the project plan. The key measures we need to calculate in
the script are OrderLineAmount, CostOfGoodsSold and Margin. To make these cal-
culation fields, we need to do some advanced scripting. There is also a key field, Cat-
egoryType, which we need to create. How this field should be created can be found
on page 5 in the Project Plan. The functionalities we are going to look at in this chap-
ter are:
• Conditions in tables
• Aggregation
• Joining tables
• Preceding Load on Preceding Load

22.1 Condition on a field in a table
According to the Project Plan, the CategoryType field can be created by using the
CategoryID field. If the CategoryID is 5 or 6, the CategoryType should be Footwear,
otherwise the type should be clothing. Let us create this field in the script.

Do:
1 Open the Edit Script dialog and go to the Dimensions tab.

2 Find the Categories table and place the cursor after the last field of this table.

3 Type a comma and press ENTER to get to a new row. Type the following to
create the CategoryType.

IF(CategoryID = 5 OR CategoryID = 6, 'Footwear',
'Clothing') AS CategoryType;

The IF statement in QlikView uses the following syntax:

if(condition , then , else)

The condition should be evaluated to be either true or false. If the condition
is true, the then part will be processed. However, if the condition is false, the
else portion of the statement will be processed.

4 Save the script and Reload.
©1996 - 2008 QlikTech International 121

5 Look at the fields. You can now see that we have a new field named Catego-
ryType.

22.2 Aggregating Data
One of the key measures is OrderSalesAmount. We need to calculate this in the script.
At the moment we have LineSalesAmount, but we want to have a total amount for
each Order. To accomplish this, we need to aggregate the LineSalesAmount.

To group or aggregate data, we will use the GROUP BY clause in the LOAD statement.
In this case, we need to aggregate the data in the OrderDetails table by OrderID.

Do:
1 Open the Script Editor and place the cursor after the OrderDetails table on

the Orders tab.

2 Add the following statement to your script:

LOAD OrderID,
sum(LineSalesAmount) AS OrderSalesAmount

RESIDENT OrderDetails
GROUP BY OrderID;

3 Notice the aggregation function sum(LineSalesAmount) included in this
statement. This function will be evaluated over all the potential combina-
tions of the other fields in the LOAD (OrderID) statement. The GROUP BY
clause is needed to aggregate, or group fields other than those included in the
aggregation. In this case, it will total the Sales Amount for each OrderID.

22.3 Joining tables
We want to add the OrderSalesAmount field to the Orders table. To do so we can add
the values of this table to the Orders table. To use two tables together like this, we
must begin by combining them into a single table. Here, the JOIN between tables can
be performed against the source database or we can use a QlikView JOIN command.
Since we already have the source data we need loaded into memory, we will use the
QlikView JOIN LOAD statement against the table just created.
122 ©1996 - 2008 QlikTech International

ADVANCED SCRIPTING
Do:
1 Go to the Script again and place the cursor just in front of LOAD in the table

just created.

2 Type LEFT JOIN (Orders) in front of the LOAD statement. The result should
be as below.

LEFT JOIN (Orders)
LOAD …

Here we use a LEFT JOIN load because we want to make sure that we do not
get any values of Orders that do not exist in the Orders table. In QlikView,
the default join behavior is a full outer join. Therefore, if there are no match-
ing fields between the two joined tables, you will get a Cartesian product of
the records. Since we are specifying OrderID in both tables, and we are
specifying Left, only the records matching OrderID included in the Orders
table will be included. We include the OrderSalesAmount field because that
is what we want to add to the Orders table.

3 Save and Reload the script.

22.4 Concatenation
Another way to join data together from multiple tables is to use concatenation. There
are three ways to concatenate data. We will explore each of these methods.

22.4.1Automatic Concatenation
If the field names and the number of fields of two or more loaded tables are
exactly the same, QlikView will automatically concatenate the results of the
different LOAD or SELECT statements into one table.

Example:

LOAD a, b, c FROM Table1.csv;
LOAD a, c, b FROM Table2.csv;

The resulting logical table has the fields a, b and c. The number of records is
the sum of the numbers of records in table 1 and table 2.

Rules:

- The number and names of the fields must be exactly the same.

- The order of the fields listed in each statement is arbitrry
©1996 - 2008 QlikTech International 123

- The order of the two statements is arbitrary.

22.4.2Forced Concatenation
If two or more tables do not have exactly the same set of fields, it is still pos-
sible to force QlikView to concatenate the two tables. This is done with the
Concatenate prefix in the script, which concatenates a table with another
named table or with the last previously created logical table.

Example:

LOAD a, b, c FROM Table1.csv;
Concatenate LOAD a, c FROM Table2.csv;

The resulting logical table has the fields a, b and c. The number of records in
the resulting table is the sum of the numbers of records in table 1 and table 2.
The value of field b in the records coming from table 2 is NULL.

Rules:

- The names of the fields must be exactly the same.

- The order of the fields listed in each statement is arbitrary

- Unless a table name of a previously loaded table is specified in the concat
enate statement the concatenate prefix uses the last previously created logi-
cal table. The order of the two statements is thus not arbitrary

22.4.3Prevent Concatenation
If two tables have the same set of fields and thus would normally be auto-
matically concatenated, you can prevent the concatenation with the NoCon-
catenate prefix. This statement prevents concatenation with any existing
logical table with the same set of fields.

The syntax is:

NoConcatenate (LoadStatement | SelectStatement)

Example:
LOAD a, b FROM Table1.csv;
Noconcatenate LOAD a, b FROM Table2.csv;

In our data, we have been provided with an additional set of new employees that are
not yet contained in the EmpOff.xls file. In order to add this data, we need to modify
our load script.
124 ©1996 - 2008 QlikTech International

ADVANCED SCRIPTING
Do:
1 Open the Edit Script dialog

2 Position your cursor on the File Data tab directly after the Employee table
has been loaded. We need to duplicate the fields we currently have for
Employee, so we will not use the Table Wizard in this case. Instead, copy the
Employee LOAD statement, and paste the copied text after the original text.

3 Since the new file data format matches our first file, we only need to change
the source of the data. Revise the From clause in the new load statement to
read as follows:

FROM Datasources\Employees_New.xls (biff, embedded
labels, table is [Employee$]);

4 Click OK and Save the QlikView document.

5 Run the script.

If you notice a number of new Synthetic Keys, or a new $Table value of
Employee-1, you know something did not work correctly with automatic
concatenation.

You can avoid a number of potential problems with automatic concatenation
by using the concatenate prefix on load statements that you know should be
concatenated.

6 Add the concatenate prefix to the new Employee LOAD statement, and spec-
ify the Employee table.

This will always concatenate these two tables together, even if inadvertent
script changes are made later to one of the loads, but not the other. The new
Employee LOAD statement should now begin as follows:

Concatenate (Employee) Load

7 You may have noticed that there are very few differences between our two
Employee LOAD statements. In fact, we can use another QlikView feature to
load the same data in just a single load statement. By using a wildcard spec-
ification on the FROM file name, QlikView will automatically load from all
files matching that specification, and concatenate the data into a single logi-
cal table for you. Since both our file names start with “Emp”, and have the
©1996 - 2008 QlikTech International 125

“.xls” file extension, we can use the wildcard “Emp*.xls” in the FROM
clause. If we make this change, and comment the second Employee LOAD
statement, the script should now read as follows:

Employees:
Load Office & ‘-’ & EmpID as BudgetKey,

EmpID AS EmployeeID,
//[Last Name],
//[First Name],
[First Name] & ' ' & [Last Name] AS Name,
Title,
[Hire Date],
Year([Hire Date]) AS [Employee Hire Year],
Office,
Extension,
[Reports To],
[Year Salary]

FROM Datasources\Emp*.xls (biff, embedded labels,
table is [Employee$]);

//Employees:
//Concatenate (Employee) Load

//Office & ‘-’ & EmpID as BudgetKey,
//EmpID AS EmployeeID,
//[Last Name],
//[First Name],
//[First Name] & ' ' & [Last Name] AS Name,
//Title,
//[Hire Date],
//Year([Hire Date]) AS [Employee Hire Year],
//Office,
//Extension,
//[Reports To],
//[Year Salary]

//FROM Datasources\Employees_New.xls (biff, embedded
labels, table is [Employee$]);

8 Save the revised script and the QlikView document. Then Reload, and verify
the Employee data has not changed.

9 As an optional exercise, you may want to try to determine why the employ-
ees listed in the Employees_New.xls file are not assigned email addresses
(field e-mail is null for these employees). What do you need to do to correct
this problem?
126 ©1996 - 2008 QlikTech International

ADVANCED SCRIPTING
22.5 Preceding Load on Preceding Load
The next key measure we are going to add is the CostOfGoodsSold. To calculate this
value, we need to add the UnitCost field from the Products table to the OrderDetails
table. We are going to do this by using a mapping table and apply this to the Order-
Details table.

Do:
1 Go to the Script Editor and place the cursor at the bottom of the Mapping

Loads tab.

2 Create the following table by copying and pasting from the Dimensions tab,
or by creating it from scratch using the Select button.

UnitCost_Map:
MAPPING LOAD

ProductID,
UnitCost;

SQL SELECT *
FROM Products;

3 Go to the Orders tab and add the following script line to the bottom of the
OrderDetails table just above the SQL SELECT * line.

applymap('UnitCost_Map', ProductID, 0) * Quantity AS
CostOfGoodsSold

We combine the applymap function with a calculation and create the CostOf-
GoodsSold field directly in the preceding LOAD of the OrderDetails table.

The last of the remaining key measures that we need to create in the script is
the Margin. According to the project plan, the Margin is calculated as the
LineSalesAmount – CostOfGoodsSold. The easiest way to do this is to place
a preceding load on top of the preceding load in the OrderDetails table. You
can add several preceding loads on top of each other and they will be evalu-
ated from the bottom and up. This means that you can use a field created in a
preceding load in a new preceding load on top of the first one.

4 We will use this functionality to create the Margin field.

5 Put the cursor after the OrderDetails label.

6 Create a preceding load by adding the following script.
LOAD

LineSalesAmount - CostOfGoodsSold AS Margin,
©1996 - 2008 QlikTech International 127

*
;

7 The full OrderDetails script should look like this:

//************** Order Details table **************
OrderDetails:
LOAD LineSalesAmount - CostOfGoodsSold AS Margin,
*
;
LOAD Discount,
LineNo,
OrderID,
autonumber(OrderID & '-' & LineNo) AS OrderLineKey,
ProductID,
1 AS ProductIDRecordCounter,
Quantity,
UnitPrice,
UnitPrice * Quantity * (1-Discount) AS
LineSalesAmount,
applymap('UnitCost_Map', ProductID, 0) * Quantity AS
CostOfGoodsSold;
SQL SELECT *
FROM `Order Details`;

LEFT JOIN (Orders)
LOAD OrderID,
sum(LineSalesAmount) AS OrderSalesAmount
RESIDENT OrderDetails
GROUP BY OrderID;

8 Save and Reload the script.

The new key measure fields should be ready for use.
128 ©1996 - 2008 QlikTech International

EXERCISES
23 EXERCISES

Do:
1 To clean up the script a little more, Join the Categories table with the Prod-

ucts table. Make sure not to get any Categories that do not exist in the Prod-
ucts table.

//************** Categories table **************
Categories:
LEFT JOIN (Products)
LOAD CategoryID,

CategoryName,
Description AS CategoryDescription,
IF(CategoryID = 5 OR CategoryID = 6, 'Footwear',
'Clothing') AS
CategoryType;

SQL SELECT *
FROM Categories;

2 Create a pivot table with CategoryType and CategoryName as dimensions.

3 Create the following four expressions:

Sales Sum(LineSalesAmount)

COGS Sum (CostOfGoodsSold)

Margin Sum (Margin)

Margin % Sum (Margin)/ Sum (LineSalesAmount)

4 Format the table the way you want to.
CategoryType CategoryName Sales COGS Margin Margin %
Clothing Baby Clothes $1004182.70 $865657.81 $138524.89 14%

Children's Clothes $672992.08 $556478.81 $116513.27 17%
Men's Clothes $1103597.99 $965081.48 $138516.51 13%
Sportswear $2152403.81 $1828130.85 $324272.96 15%
Swimwear $240237.66 $203765.47 $36472.19 15%
Women's Clothes $5169127.06 $4192395.55 $976731.51 19%

Footwear Men's Footwear $1836121.56 $1556124.93 $279996.63 15%
Women's Footwear $1142575.19 $991745.78 $150829.41 13%
©1996 - 2008 QlikTech International 129

130 ©1996 - 2008 QlikTech International

QLIKVIEW DATA (QVD) FILES
24 QLIKVIEW DATA (QVD) FILES
One of the most important features in writing scripts within QlikView is the use of
QlikView Data (QVD) files. A QVD file contains a table of data exported from
QlikView. QVD is a native QlikView format. It can only be written to and read from
QlikView. The file format is optimized for speed when reading data from a QlikView
script but it is also very compact. Reading data from a QVD file is typically 10-100
times faster than reading from other data sources.

24.1 QVD file format
A QVD file contains exactly one table. Conceptually it is quite similar to any typed
file (e.g. csv, dif, biff or fix). A QVD file is composed of three parts:
• A well formed XML header (in UTF-8 char set) describing the fields in the table,

the layout of the subsequent information and some other meta-data.
• Symbol tables in a byte stuffed format.
• Actual table data in a bit-stuffed format.

24.2 Use of QVD files
QVD files can be used for many purposes. At least four major uses can be easily
identified. In many cases two or more of them will be applicable at the same time.
• Increasing Load Speed - By buffering non-changing or slowly-changing parts

of input data in QVD files, script execution can become considerably faster for
large data sets. For large data sets it will thus be easier to meet reload time-win-
dow limitations. When developing applications it is often necessary to run the
script repeatedly. By using QVD buffering in such situations repeated waiting
times can be reduced significantly even if the data set is not that large.

• Decreasing Load on Database Servers - By buffering non-changing or slowly-
changing parts of input data in QVD files, the amount of data fetched from exter-
nal data sources can be greatly reduced. This reduces load on external databases
and network traffic. When several QlikView scripts share the same data it is only
necessary to load it once from the source database. The other applications can
make use of the data from a QVD file.

• Consolidating Data from Multiple QlikView Applications - Consolidation of
data from multiple QlikView applications is possible with the help of QVD files.
With the Binary script statement you can only load data from only one single
QlikView application into another. With QVD files, a QlikView script can com-
bine data from any number of QlikView applications. This opens up possibili-
ties, e.g. for applications consolidating similar data from different business units
etc.
©1996 - 2008 QlikTech International 131

• Incremental Load - In many common cases the QVD functionality can be used
to facilitate incremental load, i.e. only loading new records from a growing data-
base.

24.3 Creating QVD files
QVD files can be created in three ways. We will explore the first two methods in this
course.
• Explicitly created and named from script by means of the STORE command.

Simply state in the script that you want a previously read table or part of a resi-
dent table to be exported to an explicitly named filename at a location that you
choose.

• Automatically created and maintained from script. By preceding a LOAD or
SELECT statement with the BUFFER prefix, QlikView will automatically create
a QVD file which, during a later load, if certain conditions are met, will be used
instead of the original data source when reloading data. The QVD file will have
a cryptic name based on a hash of the LOAD/SELECT statement and normally
reside in the Windows Application data folder.

• Explicitly named and created from layout or via Automation. Data exported from
the QlikView layout via GUI commands or Automation macros. In the GUI you
will find QVD as one of the possible export formats under the EXPORT... com-
mand, found on the object menu of most sheet objects.

24.4 Manual creation of a QVD file in the script
We will now create a QVD file in our load script by using the store statement. This
statement will create an explicitly named QVD file.

The syntax for the store statement is:

store [(*|<field_list>) from] <table> into
<file_name>;

Reading the above script can be defined as:
<table> is a script labeled, resident, table. <file_name> is interpreted similar to
names in load statements, i.e. the directory statements apply. Fields in the <field list>
may be renamed using the AS operator.

Do:
1 Open the Edit Script dialog from the menu or toolbar.

2 Locate the Customers table load statement on the Main tab
132 ©1996 - 2008 QlikTech International

QLIKVIEW DATA (QVD) FILES
3 Following the Customers table LOAD statement, add the STORE statement as
follows:

STORE Customers into datasources/customers.qvd;

4 Click OK and then save your file. Reload the script.

You will not notice any changes to the System sheet in your application. No
new logical tables or fields exist. The STORE statement you just added has
no effect on your current QlikView document, other than executing an addi-
tional script statement. Once this statement has executed, however, a new
data file exists that may be read by this QlikView document, or any
QlikView document with access to the folder which we placed the custom-
ers.qvd file. To test this, let’s temporarily replace the Customers select
statement with a new load statement from the customers.qvd file we just
created.

5 Re-open the Edit Script dialog from the menu or toolbar.

6 Comment the existing Customers SELECT statement and the STORE state-
ment we just added.

7 Now, add a new Table Files LOAD statement using the Table Files Wizard.
Locate the customers.qvd file in the Datasources folder, and open
©1996 - 2008 QlikTech International 133

8 Notice the Type is correctly indicated as QVD. Select Finish to close the
dialog.

9 You can remove the Directory statement, and add the table label Customers
to the new LOAD statement. Your script should now look as follows:

Customers:

LOAD Address,
City,
CompanyName,
ContactName,
Country,
CustomerID,
Fax,
Phone,
PostalCode,
StateProvince,

FROM Datasources\Customers.qvd (qvd);

10 Click OK and then save your file. Reload the script.

Again, you will not notice any changes to the System sheet in your application, since
we did not change any tables – only the location and type from where we read the
data. In a normal environment, you would probably also notice a big difference in
the time it takes to read the Customer table, since a QVD file is read into QlikView
extremely fast.

Of course, the drawback to this technique is that when our Customers database data
changes, it will not be read into our QlikView document. We will address that in the
next section.

24.5 Automatic Creation of a QVD file in the
script

QVD files can be also be created and maintained automatically via the buffer prefix.
This prefix can be used on most load and select statements in the script. It indicates
that a QVD file is used to cache/buffer the result of the statement. Some limitations
exist, the most notable is that there must be either a file load or a select statement in
“the bottom”. The name of the QVD file is a calculated name (a 160-bit hash of
statement and other discriminating info, as hex) and is typically stored in the DATA
folder:

C:\Document and Settings\%user%\Local Settings\Application
Data\QlikTech\QlikView\Buffers
134 ©1996 - 2008 QlikTech International

QLIKVIEW DATA (QVD) FILES
TIP: To determine and/or change where QlikView will place QVD buffer files, as
well as additional default folder locations, you can check under Settings... User
Preferences... Folders

The prefix syntax can be either:

buffer [(option [,option])] load …
or

buffer [(option [,option])] select …

where an option is either of the following:
• incremental - this enables the ability to read only part of an underlying file. Pre-

vious size of the file is stored in the XML header in the QVD file. This is partic-
ularly useful with log files. All records loaded at a previous occasion are read
from the QVD file whereas the following new records are read from the original
source and finally an updated QVD file is created.

• stale (after) amount [(days | hours)] - This is typically used with DB sources
where there is no simple timestamp on the original data. Instead one specifies
how old the QVD snapshot can be before it is replaced with a fresh read from the
source file or database.

We will now revise our Customers table data load to use the automatic method of
QVD file generation. We know from our project plan that Customers data is updated
weekly, so we only need to read in updated data every 7 days. We will therefore
change the script to add the correct QVD buffer prefix to our original Customers
SELECT statement.

Do:
1 Re-open the Edit Script dialog from the menu or toolbar.

2 Comment the Customers table LOAD statement from QVD we added in the
previous section, and uncomment the original Customers LOAD statement.

3 Now, add the prefix buffer (stale after 7 days) to the Customers LOAD state-
ment. Your script should now look as follows:

Customers:
BUFFER (Stale After 7 days) LOAD
Address,
City,
©1996 - 2008 QlikTech International 135

CompanyName,
ContactName,
Country,
CustomerID,
DivisionID,
applymap ('Divisions_Map', DivisionID) AS
Division,
Fax,
Phone,
PostalCode,
StateProvince;
SQL SELECT * FROM Customers;

4 Click OK and then save your file. Reload the script

When using the buffer prefix on load or select statements, no explicit statements for
reading are necessary. QlikView will determine to which extent to use data from the
QVD file or acquire data via the original load or select statement.

Regardless of the QVD method used, when no transformations are applied on the
fields read (apart from renaming fields) the super-fast (optimized) reading mode will
be used. You can determine what qvd mode was used by viewing the Script Execu-
tion Progress dialog.

24.6 QVD file script functions
There are a number of new script functions that have been added for access to the
data found in the XML header of a QVD file. These functions are described in the
File Functions section of the QlikView Reference Manual. Here is a sampling of the
new functions available:

QvdCreateTime(filename) - Returns the XML-header time stamp from a QVD file
if any (otherwise NULL).

QvdNoOfRecords(filename) - Returns the number of records currently in a QVD
file.

QvdNoOfFields(filename) - Returns the number of fields in a QVD file.

QvdFieldName(filename) - Returns the name of field number field_no, if it exists
in a QVD file (otherwise NULL).

QvdTableName(filename) - Returns the name of the table contained in a QVD file.
136 ©1996 - 2008 QlikTech International

NEW IN QLIKVIEW 8.5
25 NEW IN QLIKVIEW 8.5
This chapter covers important new features deployed in QlikView Developer 8.5 and
includes
• Set Analysis
• Dollar-Sign Expansion
• Hierarchy Resolution

25.1 Set Analysis
Set Analysis is the most important new feature in the QlikView Developer 8.5
release.

QlikView has always been good at calculating aggregates for the current selection of
data. However, when you wanted to compare results for different selections in the
same chart, you needed to either prepare data in the script or resort to rather compli-
cated expressions with if clauses.

Set analysis changes all that, by making it possible to modify any aggregation func-
tion with an arbitrary selection set.

The set may be defined as a bookmark, as an on-the-fly selection in one or more
fields, as a function of current selections, the inverse of current selections, previous
selections, all data, etc., etc.

The possibilities are endless and yet the syntax is fairly simple and straightforward.

25.1.1 Overview
Sets can be used in aggregation functions. Aggregation functions normally aggregate
over the set of possible records defined by the current selection. But an alternative set
of records can be defined by a set expression. Hence, a set is conceptually similar to a
selection.

Note: A set expression is always enclosed in curly brackets when used,
e.g.{BM01}.
©1996 - 2008 QlikTech International 137

Note: In previous QlikView versions, the all qualifier may occur before an expres-
sion. This is equivalent to using “{1} total”, i.e. in such a case, the calculation will
be made over all the values of the field in the document, disregarding the chart
dimensions and current selections. (The same value is always returned regardless
of the logical state in the document.) Therefore, If the all qualifier is used, a set
expression cannot be used, since the all qualifier defines a set by itself. For legacy
reasons, the all qualifier will still work in this QlikView version 8.5, but may be
removed in coming versions.

25.1.2Set Identifiers
There are two constants that can be used to denote record sets. They are 0 and 1.
They represent an empty set and a full set of all the records in the application, respec-
tively.

The $ sign represents the records of the current selection. The set expression {$} is,
therefore, the equivalent of not stating a set expression at all. {1-$} is all the more
interesting as it defines the inverse of the current selection, that is, everything that the
current selection excludes.

Selections from the Back/Forward stack can be used as set identifiers, by use of the
dollar symbol: $1 represents the previous selection and is equivalent to pressing the
Back button. Similarly, $_1 represents one step forward and is equivalent to pressing
the Forward button. Any unsigned integer can be used in the Back and Forward nota-
tions. $0 represents the current selection.

Finally, bookmarks can be used as set identifiers. Either the bookmark ID or the
bookmark name can be used, BM01 or MyBookmark.

25.1.3 Set Operators
Several operators are used in set expressions. All set operators use sets as operands,
as described above, and return a set as result. The operators are as follows:

+ Union. This binary operation returns a set consisting of the records that
belong to any of the two set operands.

– Exclusion. This binary operation returns a set of the records that belong
to the first but not the other of the two set operands. Also, when used as
a unary operator, it returns the complement set.

* Intersection. This binary operation returns a set consisting of the
records that belong to both of the two set operands.
138 ©1996 - 2008 QlikTech International

NEW IN QLIKVIEW 8.5
/ Symmetric difference (XOR). This binary operation returns a set con-
sisting of the records that belong to either, but not both of the two set
operands.

The order of precedence is

5 Unary minus (complement)

6 Intersection and Symmetric difference

7 Union and Exclusion.

Within a group, the expression is evaluated left to right. Alternative orders can be
defined by standard brackets, which may be necessary since the set operators do not
commute, i.e. A + (B – C) is different from (A + B) – C which in turn is different
from (A – C) + B.

 Set Operator Examples:
sum({1-$} Sales)
returns the sales for everything excluded by the current selection.

sum({$*BM01} Sales)
returns the sales for the intersection between the current selection and book-
mark BM01.

sum({-($+BM01)} Sales)
returns the sales excluded by current selection and bookmark BM01.

Note: The use of set operators in combination with basic aggregation expressions
involving fields from multiple QlikView tables may cause unpredictable results
and should be avoided. E.g. if “Quantity” and “Price” are fields from different
tables, then the expression sum({$*BM01} Quantity * Price) should be avoided.

25.1.4 Set Modifiers
A set can be modified by making an additional or a changed selection.

Such a modification can be written in the set expression.

The modifier consists of one or several field names, each followed by a selection that
should be made on the field, all enclosed by < and > as in

<Year={2007, 2008}, Region={US}>

Field names and field values can be quoted as usual, e.g. <[Sales Region]={’West
coast’, ’South America’}>.
©1996 - 2008 QlikTech International 139

There are several ways to define the selection:

A simple case is a selection based on the selected values of another field, e.g. <Order-
Date = DeliveryDate>. This modifier will take the selected values from “Delivery-
Date” and apply those as a selection on “OrderDate”.

Note: If there are many distinct values – more than a couple of hundred – avoid
this operation because it is CPU intensive.

The most common case, however, is a selection based on a field value list enclosed in
curly brackets, the values separated by commas, e.g. <Year = {2007, 2008}>. The
curly brackets here define an element set, where the elements can be either field val-
ues or searches of field values.

A search is always defined by the use of double quotes, e.g. <Ingredient = {"*Gar-
lic*"}> will select all ingredients including the string ‘garlic’.

Note: Searches are case-insensitive and are made over excluded values too.

Further, the selection within a field can be defined using set operators and several ele-
ment sets, such as with modifier

<Year = {"20*", 1997} - {2000}>

which will select all years beginning with “20” in addition to “1997”, except for
“2000”.

The above notation defines new selections, disregarding the current selection in the
field. However, if you want to base your selection on the current selection in the field
and add field values, e.g. you may want a modifier <Year = Year + {2007, 2008}>. A
short and equivalent way to write this is <Year += {2007, 2008}>, i.e. the assignment
operator implicitly defines a union.

Also implicit intersections, exclusions and symmetric differences can be defined
using “*=”, “–=” and “/=”.

Tip: Empty element sets, either explicitly e.g. <Product = {}> or implicitly e.g.
<Product = {"Perpetuum Mobile"}> (a search with no hits) mean no product, i.e.
it will result in a set of records that are not associated with any product.
140 ©1996 - 2008 QlikTech International

NEW IN QLIKVIEW 8.5
Finally, for fields in and-mode, there is also the possibility of forced exclusion. If you
want to force exclusion of specific field values, you will need to use “~” in front of
the field name.

Note: A set modifier can be used on a set identifier or on its own. It cannot be
used on a set expression. When used on a set identifier, the modifier must be writ-
ten immediately after the set identifier, e.g. {$<Year = {2007, 2008}>}. When
used on its own, it is interpreted as a modification of the current selection.

25.2 Dollar-Sign Expansion
Dollar-sign expansions are definitions of text replacements used in the script or in
expressions. This process is known as expansion - even if the new text is shorter. The
replacement is made just before the script statement or the expression is evaluated.
Technically, it is a macro expansion.

A macro expansion always begins with $(and ends with) and the content between
brackets defines how the text replacement will be done. To avoid confusion with
script macros we will henceforth refer to macro expansions as dollar-sign expan-
sions.

Note: Macro expansion is unrelated to script macros (VB or Java script defined in
the script module).

25.2.1 Dollar-sign Expansion using a variable
When using a variable for text replacement in the script or in an expression, the syn-
tax

'$ (variablename)'

is used. $(variablename) expands to the value in variablename. If variablename
does not exist the expansion will be the empty string.

For numeric variable expansions, the syntax

$ (variablename)

is used. $(variablename) always yields a legal decimal-point reflection of the
numeric value of variablename, possibly with exponential notation (for very large/
small numbers). If variablename does not exist or does not contain a numeric value,
it will be expanded to 0 instead.
©1996 - 2008 QlikTech International 141

25.2.2 Dollar-Sign Expansion with Parameters
Parameters can be used in variable expansions. The variable must then contain for-
mal parameters, such as $1, $2, $3 etc. When expanding the variable, the parameters
should be stated in a comma separated list.

If the number of formal parameters exceeds the number of actual parameters, only
the formal parameters corresponding to actual parameters will be expanded. If the
number of actual parameters exceeds the number of formal parameters, the superflu-
ous actual parameters will be ignored.

The parameter $0 returns the number of parameters actually passed by a call.

25.2.3 Dollar-Sign Expansion with an Expression
Expressions can be used in dollar-sign expansions. The content between the brackets
must then start with an equal sign:

$(=expression)

The expression will be evaluated and the value will be used in the expansion.

Example:

$(=Year(Today())) returns 2008

$(=Only(Year)-1)returns the year before the selected one

25.3 Set Analysis / Dollar-Sign Expansion
Exercise

Do: Create a Straight Table chart that displays a comparison of annual
sales by CompanyName based on the year selected by the user.

1 Open the QlikView file you have been working on in class.

2 Navigate to the Main sheet.

3 Right-click in a blank area on the Main sheet and choose Select Fields…
from the context menu.

4 Add the Year field from the Available Fields column to the Fields Dis-
played in Listboxes column and click OK.

5 Right-click in a blank area on the Main sheet and New Sheet Object then
Chart from the context menu.
142 ©1996 - 2008 QlikTech International

NEW IN QLIKVIEW 8.5
6 Click on the Straight Table icon (the lower right corner of the Chart Types)
and type Annual Comparison in the Window Title. Click on the Next but-
ton

7 Add CompanyName to the Used Dimensions and rename it by typing
Customer in the box for Settings for Selected Dimension and click Next.

8 Create the following three Expressions using the Labels provided:

9 Click Finish

Label Expression

=Only(Year) Sum({$<Year={$(=Only(Year))}>}
LineSalesAmount

=Only(Year)-1 Sum({$<Year={$(=Only(Year)-1)}>}
LineSalesAmount)

=Only(Year) & ' vs '
& (Only(Year)-1)

Sum({$<Year={$(=Only(Year))}>}
LineSalesAmount) - Sum({$<Year={$(=Only(Year)-
1)}>} LineSalesAmount)
©1996 - 2008 QlikTech International 143

10 Save your QlikView file and then continue to edit the Annual Comparison
straight table.

11 Set the Sort order to match the depiction, below, remembering that Cus-
tomer should be set to Text.

12 On the Visual Cues tab, make the negative values for the year-to-year com-
parison red and the positive values green.
144 ©1996 - 2008 QlikTech International

NEW IN QLIKVIEW 8.5
13 Return to the General tab and add a Calculation Condition to ensure that
the user selects a Year to begin the comparison by entering the following into
the Calculation Condition box

Count(distinct [Year])=1

14 Click on the Error Messages button on the General tab and then on Calcu-
lation Condition Unfulfilled in the Standard Messages list.

15 Type: Select a Year to compare with a previous year in the Custom Mes-
sage box and click OK.
©1996 - 2008 QlikTech International 145

16 Click OK again to close the chart properties dialog.

17 With 2008 selected in the Year list box you added at the beginning of the
Exercise, your straight table should look something like the one below:

18 Save your work and close your QlikView file.
146 ©1996 - 2008 QlikTech International

NEW IN QLIKVIEW 8.5
25.4 Hierarchy Resolution
The new script keywords Hierarchy and HierarchyBelongsTo drastically
simplify the creation of scripts reading hierarchical data. They are important new pre-
fixes for Load and Select statements used to transform adjacent nodes tables into
expanded nodes tables.

25.4.1 Overview
Unbalanced n-level hierarchies are often used to represent geographical or organiza-
tional dimensions in data. These types of hierarchies are usually stored in an Adja-
cent Nodes table, a table where each record corresponds to a node and has a field that
contains a reference to the parent node.

Figure 49. An unbalanced, n-Level Hierarchy
©1996 - 2008 QlikTech International 147

25.4.2The Adjacent Nodes Table

In such a table the node is stored on one record only but can still have any number of
children. The table may of course contain additional fields describing attributes for
the nodes.

An Adjacent Nodes table is optimal for maintenance, but difficult to use in everyday
work. Instead, in queries and analysis, other representations are used. The Expanded
Nodes table is one common representation, where each level in the hierarchy is
stored in a separate field. The levels in an Expanded Nodes table can easily be used in
a pivot table or a in a tree structure. The hierarchy keyword can be used in the
QlikView script to transform an Adjacent Nodes table to an Expanded Nodes table.

Figure 50. Adjacent Nodes Table
148 ©1996 - 2008 QlikTech International

NEW IN QLIKVIEW 8.5
25.4.3The Expanded Nodes Table

A problem with the Expanded Nodes table is that you cannot easily use the level
fields for searches or selections, since you need à priori knowledge about which level
you should search or select in. The Ancestors table is a different representation that
solves this problem. This representation is also sometimes called a Bridge table.

25.4.4The Ancestors Table

Figure 51. Expanded Nodes Table

Figure 52. Ancestors Table
©1996 - 2008 QlikTech International 149

The Ancestors table contains one record for every child-ancestor relation found in the
data. It contains keys and names for the children as well as for the ancestors. That is
to say, every record describes which node a specific node belongs to. The hierarchy-
belongsto keyword can be used in the QlikView script to transform an Adjacent
Nodes table to an Ancestors table.

A good QlikView solution for a hierarchy needs both an Expanded Nodes table and
an Ancestors table. The former is needed to create pivot tables and generally describe
the nodes; the latter to allow selection of entire trees. The two are linked through the
node key, e.g. NodeID, which also links to a possible transaction table.

Figure 53. Table View
150 ©1996 - 2008 QlikTech International

NEW IN QLIKVIEW 8.5
25.4.5 Script Example
The following script example shows the syntax for using Hierarchy and Hierarchy-
BelongsTo to solve the problem of unbalanced n-level hiearchies.

X:

Hierarchy (NodeID, ParentID, NodeName)

LOAD NodeID,

ParentID,

NodeName,

Recno() as Attribute1

FROM [Winedistricts.xls] (biff, embedded labels, table
is [AdjacentNodes$]);

Y:

HierarchyBelongsTo (NodeID, ParentID, District,
AncestorName)

LOAD NodeID,

ParentID,

NodeName as District,

Recno() as Attribute2

FROM [Winedistricts.xls] (biff, embedded labels, table
is [AdjacentNodes$]);

25.5 Hierarchy Resolution Exercise

Do: Open the sample QlikView and data files and examine them. Come up
with examples of your own.

1 Navigate to the folder where you installed the training materials, sample files
and data sources for this course.

2 Open the ExampleFiles folder.
©1996 - 2008 QlikTech International 151

3 Explore the use of Hierarchy and HierarchyBelongsTo in the .QVWs there,
including:

• Whats New in QV85.qvw

• Hierarchies_Products_Example.qvw

• Hierarchies_Winedistricts_Example.qvw

4 Does your business have unbalanced n-level hierarchies? Sketch out an
Excel version (as in the samples) and try your hand at loading the tables into
QlikView. Or you can examine the examples and try to determine if, in fact,
you do have unbalanced n-level hiearchies in your business after all.
152 ©1996 - 2008 QlikTech International

QLIKVIEW SECURITY
26 QLIKVIEW SECURITY
Computer security is an important element of most organizations. In this Training we
will go through some methods that can be used to limit the access to QlikView docu-
ments. It is important though to realize that this chapter is not a general chapter on
QlikView security, but only an introduction to some of the methods you can use
directly in QlikView to limit the access in a QlikView document. Of course, it is pos-
sible to use Windows file security with QlikView documents, but that would be an
entirely different course.

In this chapter we will go through how you can work with QlikView security by
handing every user a user id and a password. We will also go through how to use NT
Name and NT Domain SID to allow single sign on to a QlikView document. Finally,
we will look into how you can dynamically reduce the amount of data shown to a
user.

26.1 Access control
A QlikView document is an encrypted file consisting of a database, script, layout, etc.
The file format itself provides some intrinsic protection, since it is not possible to
open the file if you do not have QlikView. It is also possible to include access levels
in the load script.

26.2 Access levels
Each user of the QlikView document can be assigned an access level: ADMIN or
USER. An individual with ADMIN privileges can change everything in the document
(subject to product limitations), whereas a person with USER privileges has restricted
access. A user of QlikView Analyzer will be automatically restricted to USER privi-
leges, regardless of SECTION ACCESS settings. If no access level is assigned to a
user in SECTION ACCESS, the user cannot open the QlikView document.

For clarity, it may be useful to use other access levels, e.g. NONE. These will always
be treated as “no access”.

26.3 Access control database
All access control is managed via text files, databases or INLINE clauses in the same
way as data is normally handled by QlikView. The tables are loaded in the normal
way, but first an ACCESS section is loaded in the script in a section declared by the
statement, SECTION ACCESS.
©1996 - 2008 QlikTech International 153

QLIKVIEW SECURITY
TIP: Be aware that all field names and values will be automatically converted to
upper case in SECTION ACCESS. This must be taken into consideration when
using preceding LOAD or RESIDENT LOAD statements within SECTION ACCESS.

If an ACCESS section is declared in the load script, the part of the script that loads
standard data must be preceded by the statement SECTION APPLICATION There are
several protected field names in the access control database, including: USERID,
PASSWORD, SERIAL, NTNAME, NTDOMAINSID, NTSID, and ACCESS. Other
user-defined fields may be added, e.g., GROUP or DEPARTMENT, to facilitate
dynamic data reduction or for administration, but QlikView does not use the extra
fields for limiting access to the document. None, all or any combination of the secu-
rity fields may be loaded in the SECTION ACCESS. If none of the security fields is
loaded, all the users will have ADMIN rights.

As another example, it is not necessary to use USERID – a check can be made on
SERIAL only. This fact can be used for command-line reloads of access-restricted
documents. The protected field names are defined below:

ACCESS A field that defines what access the user should have.

USERID A field that should contain a user id that has the privilege specified
in the field ACCESS.

PASSWORD A field that should contain an accepted password.

SERIAL A field that should contain a number corresponding to the QlikView
Serial Number. Example: 4900 2394 7113 7304

NTNAME A field that should contain a string corresponding to a Windows NT
Domain user name or group name.

NTDOMAINSID A field that should contain a string corresponding to a Windows NT
Domain SID.
Example: S-1-5-21-125976590-467238106-1092489882

NTSID A field that should contain a Windows NT SID.
Example: S-1-5-21-125976590-467238106-1092489882-1378

OMIT A field that should contain a list of fields that should be omitted for
this specific user. Wildcards may be used and the list may be empty.
©1996 - 2008 QlikTech International 154

QLIKVIEW SECURITY
QlikView will compare the QlikView serial number with the field SERIAL, the Win-
dows NT User name and groups with NTNAME, the Windows NT Domain SID with
NTDOMAINSID and the Windows NT SID with NTSID. It will further prompt for
User ID and Password and compare these with the fields USERID and PASSWORD.

If a valid combination of user ID, a password and environment property is also found
in the Section Access table, then the document is opened with the corresponding
access level. If not, QlikView will deny the user access to the document. If the user
ID and/or the password are not entered correctly within three attempts, the entire
logon procedure must be repeated.

In the logon procedure, QlikView will first check SERIAL, NTNAME, NTDOMAIN-
SID, and NTSID to see if this information is sufficient to grant the user access to the
document. If so, QlikView will open the document without prompting for USERID
and PASSWORD. If only some of the access fields are loaded, actions appropriate to
the missing data are taken, e.g., prompts for more information.

All the field names listed in LOAD or SELECT statements in the section access must
be written in UPPER CASE. Any field name containing lower case letters in the data-
base will be converted to upper case before being read by the LOAD or SELECT state-
ment. However, the USERID and the PASSWORD entered by the end-user opening
the QlikView documents are case insensitive.

26.4 Inherited access restrictions
A binary statement will cause the access restrictions to be inherited by the new
QlikView document that contains the binary statement. A person with ADMIN rights
to this new document may change the access rights of the new document by adding a
new SECTION ACCESS. A person with USER rights can execute the script and change
the script (by adding their own data to the file loaded with the binary statement). A
person with USER rights cannot change the access rights. This makes it possible for a
database administrator to control user access, including those that start with a binary
statement.

Section Access;
LOAD * INLINE [

ACCESS, USERID, PASSWORD
ADMIN, NEWDBA, ABC

];
Section Application;
.....
©1996 - 2008 QlikTech International 155

QLIKVIEW SECURITY
26.5 Hidden script
A hidden script is a password protected hidden area of script code that is always exe-
cuted prior to the standard script during a reload.

When choosing Edit Hidden Script from the File menu in the Edit Script dialog, you
will be prompted for a password that will be required before giving access to the hid-
den script. If it is the first time you access the hidden script in a document (thereby
creating one), you will have to confirm the new password. After this, the Hidden
Script tab will appear to the left of all other script tabs and remain there until you
close the document. Keep in mind the following characteristics of hidden scripts if
you choose to use them:
• If a hidden script is used, the binary command cannot be used in the normal

script, since it must be the first statement executed in a document script.
• Tables generated by the hidden part of the script will not be represented by name

in the $Table system field.
• The Script Execution Progress dialog will not be updated during the execution of

a hidden script. No entries will be made in the log file, if used. Note that as of
QlikView version 7, there is available a Document Security override to Show
Progress for Hidden Script. The progress information will also be written to the
script execution log, if applicable.

• If the hidden script contains a Section Access, such a section will not be permit-
ted in the normal script nor in a script starting with a binary load of the QlikView
file containing the hidden script.

26.6 Adding Section Access
We will now add the necessary lines to our script to check the access rights of various
users. It is generally good practice to place the script code for section access in the
“hidden script” area.

Before you start working with security in QlikView, make sure to save a back up of
your document without security. This is a safety measure so that you can start from
the beginning again if the security section does not work.

Warning! IT IS STRONGLY SUGGESTED TO SAVE A DOCUMENT WITH
SECTION ACCESSAS A NEW FILE NAME AFTER RELOAD, BUT BEFORE
ATTEMPTING TO CLOSE AND REOPEN THE QlikView DOCUMENT. IF
LOGICAL ERRORS EXIST IN SECTION ACCESS, IT MAY NO LONGER BE
POSSIBLE TO OPEN THE DOCUMENT ONCE IT IS RELOADED.
©1996 - 2008 QlikTech International 156

QLIKVIEW SECURITY
Do:
1 Save the document under another Name. e.g. QlikViewTraining_wSecurity.

2 Open the Script Editor.
3 Go to the File menu and Edit Hidden Script…
4 Enter the password hidden and confirm the password.

5 Click on the User Access… button to get to the Access Restriction Table Wiz-
ard.

6 Select Basic User Access Table so the ACCESS, USERID and PASSWORD are
checked.

7 Click OK and add the following lines to the table.

8 Click OK. The wizard should have created the following script statement.

Section Access;
LOAD * INLINE [
 ACCESS, USERID, PASSWORD
 ADMIN, ADMIN, ADMIN
USER, USER, USER
];
Section Application;

Figure 54. The Inline Data Wizard for Security.
©1996 - 2008 QlikTech International 157

QLIKVIEW SECURITY
NOTE: YOU MUST INCLUDE THE Section Application STATEMENT
AFTER THE ACCESS LOAD TO PRODUCE A USABLE DOCUMENT.

9 Name this table Access01.

10 Save and Reload the script.

This simple access check will require the users to identify themselves when opening
a document.

The USERID USER and PASSWORD USER will prevent the user from accessing the
load script if that security is set in the Document Properties. A user belonging to the
USER group is also denied access to the Security tab in the Document Properties and
Sheet Properties dialogs. Also note that QlikView Analyzer+ will automatically open
in USER mode, regardless of the SECTION ACCESS settings.

The USERID ADMIN together with the PASSWORD ADMIN will give the user the
rights to make all changes to the document in QlikView Enterprise.

Do:
1 Exit QlikView and open your newly named document again. You will now

see the following dialog box where you can enter your user ID and pass-
word.

26.7 Access control for certain commands
The settings under the Security tabs in the Document Properties dialog and the Sheet
Properties dialog in the Settings menu can prevent users from using certain menu
commands and changing the layout. To use these settings as security measures, it is
important, however, that the users have only USER rights. All users who have
ADMIN rights can change the security settings at any time.

Figure 55. The User Identification dialog.
©1996 - 2008 QlikTech International 158

QLIKVIEW SECURITY
Do:

Tip: There is a Security tab in the Sheet Properties dialog as well where you can
set security for the current sheet and apply to all sheets.

1 Make sure you are logged in to the QlikView document as Admin.

2 Go to the Settings menu and Document properties.

3 Go to the Security tab and select what the Users should and should not be
allowed to do. Make sure that a User is not allowed to Reload the script or to
Save the document.

4 Make sure to check the Admin Override Security check box so that the
admin always has permissions to do everything.

5 Click OK and Save the document.

6 Close the document, open it again, and log on as a USER. Note that you will
not be able to Save the document or Reload the script.

Figure 56. Document Properties - Security
©1996 - 2008 QlikTech International 159

QLIKVIEW SECURITY
26.8 Further access control
It is easy to increase the security control for those users who we believe will require
access to a specific document. By adding a field to the previously created INLINE
table, we can connect it to a new, two-column table in which we specify the serial
numbers that have access to the document. In this way, we can restrict access to a
specific document even further.

The new, two-column table will be created in Notepad, or a similar text editor, and be
called Access. We will save this new, tab-delimited text file in the DataSources direc-
tory.

Do:
1 Add another field called COMPUTER to the previously existing Access01

INLINE table. Include one or two identifiers for course computers (these will
act as connected fields) as shown below.

Section Access;
LOAD * INLINE [
 ACCESS, USERID, PASSWORD, COMPUTER
 ADMIN, ADMIN, ADMIN, COURSE1
 USER, USER, USER, COURSE2
];
Section Application;

2 Open Notepad, or a similar text editor

3 Create a two-column table with the fields COMPUTER and SERIAL. Include
your own serial number as a field value; you will find this number under the
About QlikView menu in QlikView. An example is shown below.

COMPUTER SERIAL
Course1 2300 2394 7111 8000
Course2 2300 2394 7111 8001

4 Save this file as Access02.txt.

It can be seen that only two license numbers have access to the document we
have created, one with USER rights and one with ADMIN rights. Also, note
that we are adding restrictions to existing USERIDs (USER), and not replac-
ing current restrictions.
©1996 - 2008 QlikTech International 160

QLIKVIEW SECURITY
Open the load script and click on the Table Files button. Load the newly cre-
ated table Access02.txt after the inline table, and prior to the SECTION
APPLICATION statement, as shown below.

Access02:
Load

COMPUTER,
SERIAL

FROM Datasources\Access02.txt
(ansi, txt, delimiter is '\t', embedded labels);

Section Application;

5 Save and Reload the document.

6 Close the document and open it again as a User.

Assuming that you have not entered your serial number in both records in the
Access02.txt file, you may only log in as a USER or ADMIN. It would be easy to add
a third line to the access control tables which always gave every serial number USER
rights, assuming a valid user ID and password. To do this, we can add a third com-
puter (e.g. Course3) and enter * as the value in the SERIAL field.

26.9 Unattended Command Line Reload
Considerations

To create security access for a non-intervention command line reload process, you
would enter the SERIAL registered to the user assigned to the reload process on the
reload computer. Then connect this to USERID and PASSWORD with * as values (*
here means all possible values, which would avoid the USERID and PASSWORD
prompts). You should also set the ACCESS field to ADMIN for this user.

If you add the following record to the Access01 LOAD INLINE statement, this will
allow the Course2 computer to be used for unattended reloads.

,,ADMIN,COURSE2]

26.10 Access restrictions on selected field
values

QlikView secured access provides a feature to prevent users from viewing parts of
the data in a document. This feature was primarily developed for QlikView Server,
but can also be used in QlikView, with a few considerations.
©1996 - 2008 QlikTech International 161

QLIKVIEW SECURITY
The selection of values to be shown or hidden is controlled by having one or more
fields with the same names in SECTION ACCESS and SECTION APPLICATION. When
the user has logged in, QlikView will copy the (upper case) selected values in SEC-
TION ACCESS to fields in SECTION APPLICATION with the same name. QlikView will
permanently conceal, from the user, all the data excluded by this process.

All field names and values used to connect SECTION ACCESS and SECTION APPLI-
CATION must be written in upper case, since all field names and field values are, by
default, converted to upper case in SECTION ACCESS.

To use this feature, the option Initial Data Reduction Based on Section Access on the
Opening page of the Document Properties dialog must be checked. If this feature is
used in documents that are to be distributed by other means than via QlikView
Server, the option Prohibit Binary Load, on the same page, must be selected to main-
tain the integrity of data protection.

TIP: There is a known issue in Dynamic Data Reduction QlikView documents
where a fully executed reload will override dynamic data reduction settings –
allowing users to see “all” data. To mitigate this security risk, QlikView version 8
will prohibit data reloads in documents that have dynamic data reduction in effect.

26.11 Field value limitation in Section Access
We will now show how to limit the amount of data shown in our QlikView document.
We want to distribute the file to the employees involved in sales. Each salesperson
will, however, not have access to data pertaining to their peers. Therefore, we will
add a limitation to the script, which ensures that people only have access to their own
data.

We will use two text files for this purpose. The first file will establish the SECTION
ACCESS fields for each allowed user. The second text file will be loaded in SEC-
TION APPLICATION and limit the application data that each allowed user will be
able to view once they open the QlikView document. Both text files are located in the
Datasources directory.

We must also bear in mind that we need an administrator to manage the document.
One of the salespersons is also the Sales Manager of the company, and he should nat-
urally have access to the entire document to be able to assess the performance of each
salesperson. We also have a Sales Coordinator in Lund who should have access to the
data on all salespersons. This access can be implemented through use of a null field
value specified in the connecting field when loaded in the SECTION ACCESS sec-
tion. You could use the * value for this field, as we used earlier for the USERID and
©1996 - 2008 QlikTech International 162

QLIKVIEW SECURITY
PASSWORD fields, but it is generally preferable to use null for connecting fields,
since this will allow access to ALL data, regardless of whether it has a logical con-
nection to the connecting field.

Do:
1 Open the load script and File - Edit Hidden Script (note that you must have

Admin privileges to edit the hidden script). Verify that your cursor is posi-
tioned on the Hidden Script tab.

2 Now, comment the previously loaded INLINE tables so that they will not
interfere with our new SECTION ACCESS tables.

3 The first text file to load is SalesSecurity.txt, located in the Datasources
directory. Label this logical table as Access01.

4 Then, add the SECTION APPLICATION statement.

5 Next, create a load statement for the SalesInitials.txt file, located in the
Datasources directory. It is good practice to use the upper function against
the connecting field (SP), since the value must be uppercase to match the
value from SECTION ACCESS. The new statements should resemble the
following.

Section Access;
Access01:
Load

[USERID],
[ACCESS],
SP /* Connecting field for data reduction */

FROM Datasources\SalesSecurity.txt
(ansi, txt, delimiter is '\t', embedded labels);

Section Application;

Access_Application:
Load

upper(SP) as SP, /* Connecting field for data
 reduction */

[SalesPerson]
FROM Datasources\SalesInitials.txt
(ansi, txt, delimiter is '\t', embedded labels);

6 Save and Reload the document.

7 Go to the Settings menu and to Document Properties.
©1996 - 2008 QlikTech International 163

QLIKVIEW SECURITY
8 Select the Opening tab and check Initial Data Reduction Based on Section
Access. Make sure to uncheck Strict Exclusion. Also, check Prohibit Binary
Load.

9 Go on to the Security tab and make sure that a User cannot edit or reload the
script. Save should not be allowed either (uncheck the checkboxes Edit
Script, Reload, Partial Reload, Save Document and Allow User Reload).

10 Save again and exit the document.

11 Open the document again and log on with Leif as USERID. Notice that you
can view data for this user, as well as the Sales Persons, Tom Lindwall and
Frank Roll.

12 Close the document and open it again, this time using James. You will now
be able to see all data again.
©1996 - 2008 QlikTech International 164

REPORTING BUGS IN QLIKVIEW
27 REPORTING BUGS IN QLIKVIEW
If you discover a bug in QlikView, it is important to report this behavior to QlikTech
or a certified QlikTech Partner. It is also critical to provide as much detailed informa-
tion as possible to describe the error, and, hopefully, the ability for QlikTech develop-
ers to reproduce the behavior. There are several things you can do to make the bug
report an efficient and useful process.

Provide a clear description of the problem, including typical actions leading up to the
error, along with any error messages that are displayed.

If it is possible to provide a sample QlikView document that can be used to demon-
strate the error, this will be very helpful in resolving the issue.

If the error occurs during a reload, include the QlikView log file with the bug report.
The log file is described in the preceding section of this course.

You should always create a System sheet in your QlikView documents to help deter-
mine the integrity of your data structure. This sheet can easily be “hidden” from users
in a production application using the Show Sheet setting on the General page of the
Sheet Properties dialog.
©1996 - 2008 QlikTech International 165

REPORTING BUGS IN QLIKVIEW
All bug reports should include the Document Support Information. This data contains
valuable information about the computer experiencing the problem, the version of
QlikView being run, and settings in the QlikView document. It is available from the
Help menu item, or by pressing CTRL+SHIFT+Q. Use the Copy to Clipboard button to
copy this information and paste in your Email or into a text document.

Figure 57. Document Support Information.
©1996 - 2008 QlikTech International 166

QLIKVIEW REFERENCE MATERIALS
28 QLIKVIEW REFERENCE
MATERIALS

There are several QlikView Reference materials available to you. Many have been
mentioned in this course already. It is important to familiarize yourself with these
tools as you develop your skills to create efficient and effective QlikView documents.
• QlikView Reference Manual: The Reference Manual documents are typically

installed on your computer during the QlikView installation process. These
include a Tutorial Guide for new users, along with detailed reference guides for
script and layout development. You can also contact your QlikTech or certified
QlikView Partner representative about ordering hard copy manuals.

• QlikView Help Subsystem: The Help subsystem is available directly from most
dialogs and menus. It includes a general content, an index of available informa-
tion, and a full text search capability. If invoked off a dialog, it will open context
specific information.

• QlikView Example Documents: These sample documents can be an invaluable
source of information that demonstrates validated methods for developing
QlikView documents. It can be quite useful to browse through these documents
to get ideas of what can be accomplished through QlikView.

• QlikView Training Material: This course document, along with other course
documents offered by QlikTech can be used as a valuable reference guide that
you can always refer back to after training is completed.
©1996 - 2008 QlikTech International 167

168 ©1996 - 2008 QlikTech International

APPENDIX
169

170

A DATA TYPES IN QLIKVIEW
QlikView can handle text strings, numbers, dates, times, timestamps and currencies.
These can be sorted, shown in various formats and used in calculations. This means
that dates, times and timestamps can be added and subtracted. This chapter is pro-
vided as background and reference information concerning how QlikView handles
data types.

A.1 Data storage in QlikView
To understand how QlikView interprets data and formats numbers, you must first
know how data is stored internally in the program. All the data loaded into QlikView
is stored in two ways: as a text string and as numbers.

The text string is always used. This is shown in the list boxes and other sheet objects.
In the formatting of data in list boxes (number formatting), only the text string is
affected.

Numbers are only used when the data can be interpreted as a valid number. All forms
of numerical calculation and sorting can be used.

If several pieces of data with the same numerical value are loaded in the same field,
they will be treated as multiple occurrences of the same value and will together be
assigned the first text string encountered. If the numbers 1.0, 1 and 1.000 are loaded
in this order, they will be given the numerical value 1, and the original text string 1.0.

A.2 Data containing information on data type
1 Fields that contain numbers of a defined data type, in a database loaded via

ODBC, will be handled according to their respective data type in QlikView.

QlikView will remember the original format of the fields, even if it is changed in one
of the number format dialogs. It is always possible to restore the original format by
clicking on the Default from Input button in the Number page of the Document Proper-
ties dialog.

QlikView uses the following standard formats for each type of number:
• Integers, floating-point numbers: standard format for numbers
• Money: standard format for currencies
• Time, date, timestamp: ISO standard

The standard settings for numbers and currencies are defined via variables, which are
interpreted in the script, or via the settings of the operating system (Control Panel).
171

A.3 Data without information on data type
The handling of data that have no specific formatting information (e.g. data from text
files or ODBC data with a general format) is more complicated. The result depends
on at least six factors.
• The format of the data in the database
• The settings of the operating system regarding numbers, time, date, etc. (Control

Panel)
• The use of variables for interpretation in the script
• The use of interpretation functions in the script
• The use of formatting functions in the script
• The use of number format dialogs in the document

QlikView tries to interpret the input data as numbers, dates, times, etc. As long as the
standard system settings are used, QlikView will interpret and format the data auto-
matically. Thus, the user need not change the script or the settings in QlikView. There
is a simple way of checking if QlikView has interpreted the data correctly: numerical
data are usually right aligned in list boxes, while text strings are left aligned.

The standard routine involves going through the following process until a suitable
format is found. (Standard format includes, for example, decimal separator, the order
of years, months and numbers, etc. in the operating system, i.e. in the Control Panel,
or in some cases defined via the special variables for interpretation by the script.)

QlikView interprets data as:
• a number according to the standard format for numbers
• a date according to the standard format for dates
• a timestamp according to the standard format for time and date
• a time according to the standard format for time
• a date according to the following format: yyyy-MM-dd
• a timestamp according to the following format: yyyy-MM-dd hh:mm [:ss[.fff]]
• a time according to the following format: hh:mm [:ss[.fff]]
• currencies according to the standard format for currencies
• a number with '.' as decimal separator and ',' as a separator for thousands, assum-

ing that neither the decimal separator nor the separator for thousands is set to ','
• a number with ',' as decimal separator and '.' as a separator for thousands, assum-

ing that neither the decimal separator nor the separator for thousands is set to '.'
• a text string. This final test never fails: if it is at all possible to load the data, it is

always possible to interpret it as a text string.
172

Interpretation problems may arise when data is loaded from text files. An incorrect
decimal separator or thousands separator can lead to QlikView interpreting the num-
bers incorrectly. The first thing you should do is to check that the variables for num-
ber interpretation in the script are correctly defined, and that the system settings in
the Control Panel are correct.

When QlikView has interpreted data as a date or time, it is possible to change the date
and time format in the Properties dialog of the sheet object (under the Number tab).
The overruling formatting is done on the document level in the Document Properties:
Number tab.
As there is no predefined format for data, a record can obviously contain values with
different formats in a single field. For example, valid dates, integers and text may be
found in one field. This data will not be formatted, but will be shown in list boxes in
their original form.

When the number format dialog for such a field is opened for the first time, the for-
mat will be Mixed. Once you have changed the format, it will be impossible for
QlikView to revert to the original format for these field values, that is, if the Survive
Reload box is checked when the script is run.

The Default from Input button is thus not activated for this kind of field after the num-
ber format has been changed.

A.4 Dates and times
QlikView stores dates, times and timestamps as a date serial number for date. The
serial number for dates is used for dates, times and timestamps and for arithmetical
calculations based on units of date and time. Dates and times can thus be added and
subtracted, and intervals can be compared, etc.

The numbers used for date and time are the values of the number of days that have
passed since December 30, 1899. QlikView is thus compatible with the date system
1900 used by Microsoft Excel for Windows, Lotus 1-2-3 and other programs,
between 1 March 1900 and 28 February 2100. Outside this time frame QlikView uses
the same date system extrapolated with the aid of the Gregorian calendar, which is
now a standard in the Western world.

The date serial number for time is a number between 0 and 1. The date serial number
0.00000 corresponds to 00:00:00, while 0.99999 corresponds to 23:59:59. Mixed
numbers show both date and time: the date serial number 2.5 corresponds to 1 Janu-
ary 1900, 12.00 hours.
173

Data is displayed according to the format of the text string. The settings made in the
Control Panel are used as standard. It is also possible to define the format for date and
time via variables that are interpreted by the script or with the aid of a formatting
function. Furthermore, it is also possible to reformat data in the Properties dialog of
the sheet objects.

Example:
1997-08-06 is stored as 35648

09:00 is stored as 0.375

1997-08-06 09:00 is stored as 35648.375 or vice versa

35648 in number format 'D/M/YY' is shown as 6/8/97

0.375 in number format 'hh.mm' is shown as 09.00

As mentioned previously, QlikView will follow a certain procedure for the interpreta-
tion of dates, times and other types of data. The result will, however, be affected by
several factors.
174

B THE FINAL SCRIPT
///$tab Hidden Script
//*SECTION ACCESS;
//Access01:
//LOAD[USERID],[ACCESS],SP
//FROM Datasources\SalesSecurity.txt (ansi, txt,
delimiter is '\t', embedded labels);
//SECTION APPLICATION;
//
//Access_Application:
//LOADupper(SP) as SP,
//SalesPerson
//FROM Datasources\SalesInitials.txt (ansi, txt,
delimiter is '\t', embedded labels);
///$tab Main
SET ThousandSep=',';
SET DecimalSep='.';
SET MoneyThousandSep=',';
SET MoneyDecimalSep='.';
SET MoneyFormat='$#,##0.00;($#,##0.00)';
SET TimeFormat='h:mm:ss TT';
SET DateFormat='M/D/YYYY';
SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';
SET
MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;N
ov;Dec';
SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

INPUTFIELD BudgetPrognosis;

CONNECT TO [Provider=Microsoft.Jet.OLEDB.4.0;User
ID=Admin;Data Source=Datasources\QWT.mdb;Mode=Share
Deny None;Extended Properties="";Jet OLEDB:System
database="";Jet OLEDB:Registry Path="";Jet
OLEDB:Database Password="";Jet OLEDB:Engine
Type=5;Jet OLEDB:Database Locking Mode=1;Jet
OLEDB:Global Partial Bulk Ops=2;Jet OLEDB:Global Bulk
Transactions=1;Jet OLEDB:New Database Password="";Jet
OLEDB:Create System Database=False;Jet OLEDB:Encrypt
Database=False;Jet OLEDB:Don't Copy Locale on
Compact=False;Jet OLEDB:Compact Without Replica
Repair=False;Jet OLEDB:SFP=False];

175

//************** Quarters defined **************
//Quarters:
//LOAD * INLINE [
// Month, Quarter
// 1,Q1
// 2,Q1
// 3,Q1
// 4,Q2
// 5,Q2
// 6,Q2
// 7,Q3
// 8,Q3
// 9,Q3
// 10,Q4
// 11,Q4
// 12,Q4];

$(Include=datasources\email.txt)
///$tab Mapping Loads
//************** Quarters mapping Load **************
Quarters_Map:
MAPPING LOAD
rowno() as Month,
'Q' & Ceil(rowno()/3) as Quarter
Autogenerate(12);

//************** Shippers mapping load **************
Shippers_Map:
MAPPING LOAD

ShipperID,
CompanyName AS Shippers;

SQL SELECT *
FROM Shippers;

//************** Divisions mapping load **************
Divisions_Map:
MAPPING LOAD

DivisionID,
DivisionName;
SQL SELECT *
FROM Divisions;

//************** Unit Cost mapping load **************
UnitCost_Map:
176

MAPPING LOAD
ProductID,
UnitCost;
SQL SELECT *
FROM Products;
///$tab Dimensions
//************** Customers table **************
Customers:
BUFFER (Stale After 7 days) LOAD

Address,
City,
CompanyName,
ContactName,
Country,
CustomerID,
DivisionID,
applymap ('Divisions_Map', DivisionID) AS
Division,
Fax,
Phone,
PostalCode,
StateProvince;

SQL SELECT * FROM Customers;

//STORE Customers into DataSource/Customers.qvd;

//Customers:
//LOAD Address,
// City,
// CompanyName,
// ContactName,
// Country,
// CustomerID,
// DivisionID,
// applymap ('Divisions_Map', DivisionID) AS
Division,
// Fax,
// Phone,
// PostalCode,
// StateProvince;
//SQL SELECT *
//FROM Customers;

//************** Products table **************
Products:
177

LOAD CategoryID,
ProductID,
ProductName,
QuantityPerUnit,
SupplierID,
UnitCost,
//UnitPrice,
UnitsInStock,
UnitsOnOrder;
SQL SELECT *
FROM Products;

//************** Categories table **************
Categories:
LEFT JOIN (Products)
LOAD CategoryID,
CategoryName,
Description AS CategoryDescription,
IF(CategoryID = 5 OR CategoryID = 6, 'Footwear',
'Clothing') AS CategoryType;
SQL SELECT *
FROM Categories;

//************** Shipments table **************
Shipments:
LOAD //CustomerID,
//EmployeeID,
//LineNo,
//OrderID,
autonumber(OrderID & '-' & LineNo) AS OrderLineKey,
//ProductID,
ShipmentDate;
//ShipperID;
SQL SELECT *
FROM Shipments;

//************** Suppliers table **************
QUALIFY *;
UNQUALIFY SupplierID;
Suppliers:
LOAD SupplierID,
CompanyName,
ContactName,
Address,
City,
178

PostalCode,
Country,
Phone,
Fax
FROM Datasources\Suppliers.xml (XmlSimple, Table is
[Suppliers/_empty_]);
UNQUALIFY *;
///$tab Orders
//************** Orders table **************
Orders:
LOAD CustomerID,
EmployeeID,
EmployeeID AS EmployeeSalesID,
Freight,
OrderDate,
//Year(OrderDate) AS Year,
//Month(OrderDate) AS Month,
//Day(OrderDate) AS Day,
//
applymap('Quarters_Map',num(month(OrderDate)),null())
AS Quarter,
OrderID,
OrderID AS OrderIDCounter,
ShipperID,
applymap('Shippers_Map', ShipperID, 'MISSING') AS
Shipper;
SQL SELECT *
FROM Orders ORDER BY OrderDate ASC;

//************** Order Details table **************
OrderDetails:
LOAD LineSalesAmount - CostOfGoodsSold AS Margin,

*
;

LOAD Discount,
LineNo,
OrderID,
autonumber(OrderID & '-' & LineNo) AS OrderLineKey,
ProductID,
1 AS ProductIDRecordCounter,
Quantity,
UnitPrice,
UnitPrice * Quantity * (1-Discount) AS
LineSalesAmount,
179

applymap('UnitCost_Map', ProductID, 0) * Quantity AS
CostOfGoodsSold;
SQL SELECT *
FROM `Order Details`;

LEFT JOIN (Orders)
LOAD OrderID,
sum(LineSalesAmount) AS OrderSalesAmount
RESIDENT OrderDetails
GROUP BY OrderID;
///$tab Calendar
LET varMinDate = Num(Peek('OrderDate', 0, 'Orders'));
LET varMaxDate = Num(Peek('OrderDate', -1, 'Orders'));
LET vToday = Num(today());

//*************** Temporary Calendar ***************
TempCalendar:
LOAD

$(varMinDate)+IterNo()-1 AS Num,
Date($(varMinDate)+IterNo()-1) AS TempDate

AUTOGENERATE 1 WHILE $(varMinDate)+IterNo()-1<=
$(varMaxDate);

//*************** Master Calendar ***************
MasterCalendar:
LOAD TempDate AS OrderDate,
week(TempDate) AS Week,
year(TempDate) AS Year,
month(TempDate) AS Month,
day(TempDate) AS Day,
weekday(TempDate) AS WeekDay,
applymap('Quarters_Map', num(month(TempDate)),
null()) AS Quarter,
date(monthstart(TempDate), 'MMM-YYYY') AS MonthYear,
week(TempDate)&'-'&Year(TempDate) AS WeekYear,
Year2Date(TempDate, 0, 1, $(vToday))*-1 AS CurYTDFlag,

Year2Date(TempDate,-1, 1, $(vToday))*-1 AS
LastYTDFlag
RESIDENT TempCalendar
ORDER BY TempDate Asc;
///$tab File Data
//************** Employees table **************
Employees:
LOAD Office & '-' & EmpID AS BudgetKey,

EmpID AS EmployeeID,
//[Last Name],
180

//[First Name],
[First Name] & ' ' & [Last Name] AS Name,
Title,
[Hire Date],
Year([Hire Date]) AS HireYear,
Office,
Extension,
[Reports To],
[Year Salary]

FROM Datasources\EmpOff.xls (biff, embedded labels,
table is [Employee$]);

//Employees:
//Concatenate (Employees)
//LOAD Office & '-' & EmpID AS BudgetKey,
//EmpID AS EmployeeID,

//[Last Name],
//[First Name],
//[First Name] & ' ' & [Last Name] AS Name,
//Title,
//[Hire Date],
//Year([Hire Date]) AS HireYear,
//Office,
//Extension,
//[Reports To],
//[Year Salary]

//FROM Datasources\Employees_New.xls (biff, embedded
labels, table is [Employee$]);

//************** Offices table **************
Offices:
LOAD Office,

OfficeAddress,
OfficePostalCode,
OfficeCity,
OfficeStateProvince,
OfficePhone,
OfficeFax,
OfficeCountry

FROM Datasources\EmpOff.xls (biff, embedded labels,
table is [Office$]);
///$tab Sales Person
//************** SalesPersons table **************
SalesPersons:
LOAD EmployeeID,
181

Name AS SalesPerson,
Title AS SalesTitle

RESIDENT Employees
//WHERE Title LIKE 'Sales*' OR Title = 'President';
WHERE exists (EmployeeSalesID, EmployeeID);
///$tab Budget
BudgetsTemp:
CROSSTABLE(BudgetYear, BudgetAmount, 1)
LOAD Office & '-' & EmployeeID AS BudgetKey,

[2004],
[2005],
[2006],
[2007],
[2008]

FROM Datasources\Budget.xls (biff, header is line,
embedded labels, table is [Sheet1$], filters(
Replace(1, top, StrCnd(null))
));

Budgets:
LOAD *,

BudgetAmount AS BudgetPrognosis
RESIDENT BudgetsTemp;
DROP TABLE BudgetsTemp;
182

